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Outline

Intreduction to'Face = Face Recognition by
Recognition Eusion of 2D4-3D
Subspace Analysis = Face Recognition Using
linear Methods Near Infrared Images
Nonlinear Methods = heterogeneous Face
Face Grand Challenges Recognition
from Subspace Viewpoint £ - Biometric Anti-
[Face Recognition SPOOfING

Methods

Face Detection

Face Pose Estimation
Face Alignment

Face Recognition

s Demos — AuthenMetric
Face Recognition Systems
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Introduction



[Face Recognition Process

Face Detection
Face liracking
Face Alignment
Face Recognition

@ Microsoft Techfest 2002

Stan Z. Li, Chinese Academy of Sciences



Face Recognition System

Face
Location,
Input; Size & Pose

Image/Video

Pose
Estimation

Performing Persons’

Training

Modules
Training 1 Training 3

Example
Images of
Individuals

Mew Face Mew Person
Examples Face Examples

Stan Z. Li, Chinese Academy of Sciences




Face Tracking (MSR)

IAput:

= \ideo containing
moving faces

OUtpUt: | WAL ‘H*P o

."b:lp. -,‘-33.
= -

= llocations, scales,
and poses of
tracked face

@ Microsoft Techfest 2002
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Face Alignment

Input:

= Face detection/tracking
output (lecation, scale, and
POSE)

Output:

s Accurate localization of: facial
landmarks /foutline

PUrpose:

s FOr geometric normalization
towards accurate facial
feature extraction

Stan Z. Li, Chinese Academy of Sciences



Face Matching

o e fFeature Extraction
A Matching
oy Decision (Identification,
\erification)

OOOOOO

Face
Database

Stan Z. Li, Chinese Academy of Sciences



Face as Compared to
Other Biometrics

Universality: - H
Acceptance - H
Easy to acquire-- H R s
Permanence - M :

Reliability: - M-H
Unigueness: -- L

Stan Z. Li, Chinese Academy of Sciences



Face Recognition R&D

Applied Basic Research Algorithm Research

= [mage precessing = [Face detection

= Vision — poese, lighting = Face tracking

s Pattern recognition = [Face alignment
Statisticalileanning = Feature extraction

Subspaces & manifolds = Face Matching

System development
Application Development

Stan Z. Li, Chinese Academy of Sciences 10



History (60-70s):
Geometric Feature Based Approach

Feature

0.5 " [ (30,31) - (20 _36)
056 " [ (1221 4 [(11.21] 1}

0.6~ [ 12,0] - (12,200 ]

a i traditional AI=CV' framewaork
= Image features pre-specifiied

m Features=

{type, |Ocat|0ns’ dlstances} Table 1: The 30-dimensional feature vector:||



History (907s -):

Learning-Based, Subspace Analysis Approach

Different from' the AI-CV approach

= Example-based

= Features L.earned

= Dimension reduction

= Linear mapping from high-dim to' low-dim spaces

Linear: Subspace Methods: Eigenface (PCA)
and Others

= [Face Representation: Kirby & Sirevich. 1990.
= Face Recognition: Turk & Pentland. 1991.

Nonlinear Methods
= (More contemporary. Work).

Stan Z. Li, Chinese Academy of Sciences
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../人脸识别+智能监控-自动化所李子青/CNN-Techfest-2002-3.wmv

Year 2005: AuthenMetrics of CBSR

MRTDISystem ‘

E-Passport at China-Hong Keng Boearder:
E-Passport at China-Macau Boarder
Access-control in “Beijing’

Others

Stan Z. Li, Chinese Academy. of Sciences

14



Challenges in
[Face Recognition
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Image Changes due to Variations in
s Geometry (Head pose, Facial expression)
s Photometry (Tliumination, Camera properties)

Other Variation Eactors

= Aging, Facial hair, Cosmetics, ACCESSOrIES
(eyeglasses, etc)

Stan Z. Li, Chinese Academy of Sciences 15



Outline

Intreduction tor Face Recognition
llinéar Subspace Analysis
Nonlinear Subspace Analysis
Research infMSRA Face Group
Face Recognition Evaluation
Future Perspectives

Stan Z. Li, Chinese Academy of Sciences 16



Linear Supspace Analysis



Subspace Modeling
Dimension Reduction
Feature Extraction

Eg: Images of size 64x64
Dimensionality of image space: 64x64=4096 (pixels)
Pixel values in {0,...,255}

256724096 > 10719864 possible configurations in
4096-dim' hypercube

fFace pattern living in lew: dim' subspace

Dimension reduction; (features = projected
coordinates)

Stan Z. Li, Chinese Academy of Sciences 18



Dimension Reduction

Given {x:in RN [14=1,... K}, find
. A space R
2. Dimension Reduction-Mapping
V=E(x): RN = RN
5, Reconstruction Mapping (Smooeth, Non-Singular)
x=f(y): R = M (a manifold in R™)
Such that

. n<Nas small as possible
2, VI approeximately’ contains 4x: i
(reconstruction error is small)

Note that f(F(x)) needs not be x (identity: mapping)

Stan Z. Li, Chinese Academy of Sciences 19



Linear Subspace Analysis

Linear proejection: n dim - m dim, m<n
= h=Px X: nxd, P: mxn, h: mxid
Reconstruction x=Bh,  B: nxm
Matrix*Factorization
m X~BH, X=(X...,Xy),H=(h,....hy)

where X: nxN, B: nxm, H: mx\
= Principal component analysis (PCA)
= \Vector Quantization (V@)
s Independent component analysis (ICA)
= Non-Negative Matrix Factorization (NME, LNME)
= Linear Discriminant Analysis (LDA)

Stan Z. Li, Chinese Academy of Sciences
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PCA, VQ, NMF, and LNMF

X = BH

Method Constraints

PCA brorthonormal vectors

VQ N unNary Vectors

ICA N Independent

NMF B, NON-Negative vectors

LNMF b,h non-negative + hisparse
> b really part-based

Stan Z. Li, Chinese Academy of Sciences
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PCA Representation

BasIs vectors = Principal eigenfiaces

ela A

5th
Face as linear combination of eigenfaces

= Fan |
:
xe —O9569X} -0.1945 X * +0.0461X . +0.0573X = F -
R

- L. {

Original Face 2nd 3rd 4th

Y=[0.9569, - 0.1945, 0.0461, 0.0573, ..., ]

Stan Z. Li, Chinese Academy. of Sciences



Independent Component Analysis

X ~BH, X=(X11"'!XN)!Hz(hll"'rhN)

H components as independent as possible

23



LLearning View-Subspaces by Using

PCA, I

CA, IS
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Non-negative Matrix Factorization

Papers:

= |.ee and Seung, Nature!, 1999

= | .ee and Seung, N/PS; 2001.

Non-negative Matrix Factorization X ~BH
min D(X||BH), s.t. B,H >=0and 2% Fbr all j

Basis Components learned by different methods

Training Example




Problems with NMFE

NME Results Learned From:

Lee-Seung’'s Data ORL Data Our. Data

B ]
i &
] L[
| &® ] 1O
e B 5 (<00
2] 5 N G
13 e e

|learned components not really: localized, part-based
Face recognition not very good

Stan Z. Li, Chinese Academy. of Sciences 26




L.ocal Non-negative Matrix Factorization

Additional constraints impoesed on NME
for spatially: localized, part-based representation

Comparative results leamed from ORL data:
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LNMF NMF 'PCA .

Stan Z. Li, Chinese Academy of Sciences



Additional Constraints

X~BH . Let U=[u,]=8"BV=[v,]=HH"

Maximum: Sparsity in A. A basis component: b,
should not be further decomposed inte.more
components. Given Y =1, (b, |=u, =) b%
should be minimized: for all j:

Z,H bj I= Z/uﬂ = min

2, Maximum tetal activity. Retain most
EXPIreSSive components:

3 =Y, = max
i J i

3. Orthogonality: of basis:

Z Hl _mln
e 28

Stan Z. Li, Chinese Academy of Sciences




.earning by
Constrained Optimization

NME

min D(X ||BH) = ZX log X, /(BH), - X, +(BH),
s.t. BH>= 0 > by=1

ENME = NME <+ |localization: constraints
min L(X,BH)= ZX log X, ((BH), +aY (B'B), —ﬁ2H2

st.BH>=0, Y b=l

Stan Z. Li, Chinese Academy of Sciences
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LNME Learning Algorithm

" by
{ hy, = \/ hklzxil Zk B

h,

b ‘ /
klzj'xkj Zkbklh/j
Zjhlj

bk] -

¥
bkl

s
ki Zk b,

Convergence proved.

Stan Z. Li, Chinese Academy of Sciences
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Comparison of
PCA, NMF and LNMF Bases
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LNME vs NME
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Nonlinear Subspace AnalysIs



Face Detection and Recognition
- From Manifold' Viewpoint

e Rl = e el
e 1 R el i
Faces Tz The SRS ceplelienl

TF Py iy .
Nonfaces -1 Wy I

Detection Recognition

nonface

WA

Stan-Z-di, Chinese Academy of Sciences 34




Beyond Linear Subspaces

Face subspaces are nonlinear manifolds
s Manifelds of faces and nonfaces (detection)
s Manifelds of: different persons (recognition)

Nonlinear Separability of face manifolds

s Faces/Nonfaces are separable In IMage space

s Face 1 / Face 2/ ... [ Eace N are also
Separable

= Yet, highly nonlinear and interweaving

Stan Z. Li, Chinese Academy of Sciences 89



Dimensionality of Nonlinear Subspace

Llinear Space: Spanning dimension (basis
dimension)

Intrinsic dimension (latent dimension): the
smallest number: off parameters to: model the
data without less. Iff It IS @, then the observation
(of dimension /7>d) is generated by,

X=H(vi,...,Vd)
JTlopological space (local dimension): the basis

dimension of the local linear approximation: of
the hypersurface on which the data resides.

Stan Z. Li, Chinese Academy of Sciences 36



Nonlinear Subspace Illustration:

Linear projection onto Nonlinear projection
the x1-x2 subspace onto the t subspace (1-

(2-D) as a circ] ) as a straight line.

%h Z. LI, Chinese Academy. of Q: ences 37



Intrinsic Dimension Estimation

Using Neighboerheed Infermation (Jain, Dubes
and Students. |IEEE-PAMI. 1979).

RPacking Number VMethoeds (Kegl 2002)

correlation dimension of S is defined as

Definition 3 7he scale-dependent correlation dimension of a finite ser S, =
{z1,..., 2.} is Clra) Clr)
= log C(r2) —log C(m
Deoe(lry,m3) =————+—= =,
core(T1,72) log 75 — log 11

Definition 4 The capacity dimension of a subser § of a metric space X is

. logN(r}
De = —lim ———=.
cap = = limy =

Definition 5 The scale-dependent capacity dimension of a finite set Sy, = {z1,...,Tn}
is
_log M(r2) —log M (r1)

Deap(ri;m) = logrs —logr;

38



Nonlinear Subspace AnalysIs

Recent Advances

a ISOMAP: ((Science, 2000)

s LLE ((Scrence, 2000)

= Laplacian EigenMap (WV/PS; 2001)
Properties

» Count for intéraction wWithin
neighboerhood

= Non-orthogonal projections
Advantages

= | ead more sensible modeling

= Discover intrinsic dimensions
Disadvantages

= Increased computation

= Need to work out a mapping

ov .r‘!r.rﬂ'_ad asl =6l arIl e '.-d -Ill .tn’- ad adl ad
Stan Z. Li, Chinese AcademyiOidSEIENGEST IE I I s i



ISOMAP

ISOMAP: = Geodesic dist + MBS

Metric MDS Is used to recover
parametrizations in lower dimensional space

Z10)



ISOMAP Results

o

Up-down pose
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Stan Z. Li, Chinese Academy of Sciences 41



Locally Linear Embedding (LLE)

Inthernigh dim space_find W
x> Zj WX, ¥ A
mint(W) > Z| Xi _Zleij |2
S.t. SWi=1

In the low dim space find Y
DRy =, Yl S 1

Stan Z. Li, Chinese Academy of Sciences 42



LLE Result:
Pose and Expression
DIMENSIONS

43



Face Grand Challenges
- From Subspace Viewpoint



Challenges in Face Recognition

Complexity: off nonlinear face manifoelds

Preblem in Generalizing

= LLimited Tiraining Data

= When lighting changes

= WWhen poese changes

= Daily'changes and aging

= \When Camera property. change

Euclidean Geometry: Inappropriate in
IMage space

Stan Z. Li, Chinese Academy of Sciences
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Rotated Faces
iIn PCA Subspace

\/‘ ' \/‘ v \,/‘ 4 \j‘ v \.," v \J‘ .* \vl“ Vv \/‘ - '\-f‘ wr L‘ wr L‘ W

N

0 -
400 300 200 00 0 00 20 30 4m0 ! 30 20 gm0 o0 2m
pricaeft

Stan Z. Li, Chinese Academy of Sciences
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Scaled Faces
iIn PCA Subspace

s bbb d o dobhdohd

Y J,b, o hd st_‘ |
B e e

600 -400 2 0 400 600

Stan Z. Li, Chinese Academy of Sciences

400
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Translated Faces
in PCA Subspace

-400 -200 0 0 400 GO0 : - 0 100 200 300 400

Manifelds are Folding and Interweaving

Stan Z. Li, Chinese Academy of Sciences 48



PCA Subspace of “Re-Lighted” Faces

1000 1500

1000

Stan Z. Li, Chinese Academy of Sciences 49



Subspaces In
Detection and Recognition

o W RN D P B | S
Faces | ' AusiE¥: . IF" bl T

AW iy .
Nonfaces T=L W » 17

Detection Recognition

nonface Person 1

WA

Stan-Z-di, Chinese Academy of Sciences
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Subspaces In
Face Recognition and Gender: Classification

L §TEEIH-D 9
€4 By FE & Py

Recognition Gender

4F\/s‘xale

Person 1

Stan Z. Li, Chinese Academy of Sciences 51



Non-Euclidean Geometry

Euclidean Geometry
Inapprepriate

Need tor model
manifolds in
Non-Euclidean
Space

Geodesic distance

Stan Z. Li, Chinese Academy of Sciences
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Separability In
Image and Feature Spaces

Individual faces Separable in Image Space
= Complex, but separable

Difficult to separate in feature space
= Overlapping in'feature space due to information loss

Overlapping

Person 1 seE

Dim
Reduction

>

Im ag € Spa%@m Z. L1, Chinese Academy of Science!:ea‘tu re SpaCe 53



Face Detection



Face Detection: Approach

Scan the image with subwindows of
Varying size and location

Classify: a subwindow: X Into: face/noniace

s Need a “‘strong classifier” for accurate
classification

Post-processing: Merge multiple detects

~ i SR
Faces |, ' SEsLey . E ﬁ

e % Sgy g -
Nonfaces =1 @W Y .

Stan Z. LI, Chmese Academy of Smences
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State-of-the-Art Methods:
Local Features + Boosting

Viola & Jones, 2001

= Haar Features + AdaBoost 4+ Cascade
Schneiderman & Kanade, 2000

= \Wavelet Histograms

i, et al, 2002

s Extended Haar Features + EloatBoost + Pyramid
Haizhou Ai, et al, 2003-2005

= Omni-view. face detection, Haar feature + Boosting +
More advanced: architecture

Stan Z. Li, Chinese Academy of Sciences 56



AdaBoost Method
(Viola & Jones)



Simple Haar features
(Viela & Jones)

3 rectangular features types:
.] s [Worrectangle feature type
(henzontal/vertical)

o three-rectangle feature type

1 'm

These rectangular features, as oppesed (o more

expressive steerable filters, cam be computed very.
efficiently using integral Images.

» four-rectangle feature'type

Using 24x24 windows - 49,396 features.

Stan Z. Li, Chinese Academy of Sciences 58



Integral Images

Stan Z. Li, Chinese Academy of Sciences 59



AdaBoost Learning

Proposed by Freund et all 1997, 1998

Task: Given {(x; Vi), leams /,{(X) so that'y; = sign(/7,(X))
Llearns and COmDINES a SEqUENCE Off WeakK: ClassIfiers: /7.(X)
INtO a strong classifier

\Y
Hw (X) ~ Zamhm (X)
m=1
A (X)are learned in stages to minimize error bound (see
Iater) J(HM (x)) - Z[_ e—y,-HM (x;)

Associate (X, V) withiweight w, and reweight after each
iteration (see formula later)

Stan Z. Li, Chinese Academy of Sciences 610)



Weak Classifiers

One WC for a scalar Haar feature

W outputs; fiace/noenface by comparing
the scalar value with a threshold

Best threshold obtained by examining the
weighted' histogram

Stan Z. Li, Chinese Academy of Sciences 61



Learning Weak Classifiers
Based on Weighted Histogram

Sample Distribution

pos-sample
neg-sample

=
2 oo
)
(=
o

40 B0 80 100
Feature Value

Stan Z. Li, Chinese Academy of Sciences
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Best Features Learned

S

EirsSt fieatures selected by AdaBoost are
meaningitl and have highrdiscriminative pewer

By Varying the threshold of the final classifier
ONE Gan construct a two-fieature classifier WhICh
Nas a detection rate ofi 1 and al false positive
rate off 0.4.

Stan Z. Li, Chinese Academy of Sciences 63



Speed-up through Cascade

Simple, boested classifiers cans reject many: off negative
sUb-windews While detecting all' positive instances.

Series of such simple classifiers can achieve good
detection performance while eliminating the need for

further processing off negative sub-WinAdows.

S -
AII Sub-windows

Further
Processing

Reject Sub— window

Stan Z. LI, Chlnese Academy of Sciences 64



FloatBoost Method

Li, et al



AdaBoost: Advantages

Provably: efiective provided that /7 are “good
enougn’

Generally. does not overdit
a Does overfit when data contains outliers

= a less complex classifier (combining fewer weak
classifiers) Is preferred

Simple and easy to program
Almost no parameters to tune (except M, AWC)

Stan Z. Li, Chinese Academy of Sciences 616)



AdaBoost: Problems

A sequential, local minimizer

Viay. everifit When too many: Weak: classifiers
are combined’ (recent studies)

“PDetachment” between cost function and
error rate

Need methods for learning weak: classifiers

Stan Z. Li, Chinese Academy of Sciences
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FloatBoost Project: Objectives

Better boosting learning: o address (1-3)
Py Incorpoerating Eloating Search (Pudil,
Novoviceva & Kittler, 1994)

Weak classifier: For (4), to derive formula
fior efficient approximation off Weak
classifier

Fast multi-view: face detection: System

Stan Z. Li, Chinese Academy of Sciences 68



FloatBoost =
AdaBoost + FloatingSearch

Procedure
I, Boosting toradd one weak: classifier

2, Il removing a weak classifier leads tora maximum
Improvement (eg in erroer rate), remoyve the weak
learner and go to) 2

s, Iff termination condition not satisfied, go to 1

Results inia strong classifier of less
complexity with improved performance

Stan Z. Li, Chinese Academy of Sciences
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Learning Weak Classifiers

RealBoost |earns a strong classifier of the form
HAX) =h,X) + ALX) + ...+ By (X) + AfX)
In stages to: minimize the errer bound:

JEH YD are 2 F e

Given the first M -1 weak classifiers, the best, ideal
M-th s derived as

1Py ==l o )
h (x)=—1lo
e “P(y=1[x,w™D)

=¥ Hy 1 (x;)

. M1 M2
with w™  =w; “e

Stan Z. Li, Chinese Academy of Sciences 70



Extended Haar Features

hree types of 77

A total ofi K>400,000 such features
They are overcomplete for representing x

Stan Z. Li, Chinese Academy. of Sciences 71



Weak Classifiers

| P(y=+1|x,w™™)
h, (x)= Elog Py = 1| x. D) =L (%)-T

where

| =7
i = lod px|y=+Lw

2 p(x]y=-1,w*7")
17 1P

< A (y=+1)
T 2 Y

(M-1) )

Problem: estimation of p(x |y, w) or L,(x) IS
difficult for high dimensional data x

Stan Z. Li, Chinese Academy of Sciences
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Approximating p(x | v, w)

Design weak: classifiers in 1-space instead of: 400-D
Space
Design a dictionary; offcandidate scalar features off X;

{ f(x) | k=1,...,K } -- see later

Given 1Vx),---, f™ " (x) selected by previous stages,
appreximate

px |y, WY~ p(f P (x), e, S0 @), F ()], W)
= p(F,(x)| y, W) p(f ¥ P (x)| 3, wH D)o p(fP(x)] 3, W)

Stan Z. Li, Chinese Academy of Sciences 73



Uni-Variate Weak Classifiers

Construct a dictionary. of candidate weak classifiers

— (M-1)
h(M)(x)=llog p(fi(x)|y=+1Lw ) > Tk(M)
k

2 p(fi(x)]y=-Lw"D")

where

90 = Loy f POy =+1w™)
= p(F @) y=—Lw")

Find the feature k so that 4" (x) best fits A,(x) w.r.t.
training data {x;}, and take #,, (x) = A" (x)

Stan Z. Li, Chinese Academy of Sciences



Dealing with Out-of-Plane Rotation

Coarseto fine BRASRS R id S e dss s s

| 4 [0 70| 0 |so[ s [0] o | 0] o] w0 50| 0 o0
view partition: N
A E I
I S N S I

Stan Z Li, Chinese Academy ofi Sciences 75



Detector-Pyramid

Face/Pose

Level

3 Jotal

Mon-Face

Time (ms)

15 | 202

Method

V-based

Det.Pyr

Time (ms)

967

202

Stan Z. Li, Chinese Academy of Sciences
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Dealing with In-Plane Rotation

Boosted face detector covers +- 15 deg
Rotating the image: by +-50 deg
As result, +-45 deg can be covered

i Merged
Stan Z. Li, Chinese Academy of SCiEntiest 77



Multi-View. Face Detection

fFast MV EDisystem
reported (5 ps)
Glves pose estimate
while detecting faces

Face detection and
recognition demo

COMOrrOW.

Stan Z. Li, Chinese Academy of Sciences
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Conclusions

FloatBoost learns a strong classifier ofi less
complexity than AdaBoost (hence less
overfitting)

Formula for uni-variate approximation ofi
ideal weak classifiers

Fast multi-view: face detection system

Future work:
s Dealing with outliers in learning
= Improving training efficiency: by sub-sampling

Stan Z. Li, Chinese Academy of Sciences 79



Face Pose Estimation



Facial Pose Estimation

Approximately. 75 percent ofi the fiaces in
NOmMe photos are noen-frontal

Jlask: to estimate the angle ofi head
rotation

fl‘ 2 E‘P."'.

out-of-plane rotation

Stan Z. Li, Chinese Academy of Sciences



Approaches

Unsupervised: learning (eg using ICA)

s Pose clustering and pose classification learned
using pose-unlabeled face data

Supervised learning

s Pose clustering and pose classification learned
using pose-labeled face data

Stan Z. Li, Chinese Academy of Sciences
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Supervised LLearning oft Nonlinear Mapping
for Pose Estimation

:_‘ : ; Correlated SVR Array
s ER IS Lg 4 . -
.~' : é ‘ ™
eVl ¥l L I
0, = 00,31 = 100,...,99 =90° x: 400-D> y: 10-D> 0: 1-D
Regardless of illumination SVR training objective:

and'identity yi(x):cos(g(x)—gj)

Stan Z. Li, Chinese Academy of Sciences 83



Pose Estimation Using SVR Array
(Liret all ICCV 01)

View-Specific SVR’s:

B} AR Pt 2IEE G
6’0 =0 ,¢91 =10 ,...,6’9 =90

i Correlated SVR Array

SVR @; s trained to output:
.=cos(6(x)—0.
y j=cos(0)-0))

Supervised Learning ofi Nonlinear View-
Subspaces
s From View [labeled Training Data

- Il umi nagltgnl}T Llngergsaerpc:ademy of Sciences 9




[llumination-Invariant,
View-Specific Signature

a=90 degree a=40 degree a=0 degree

Stan Z. Li, Chinese Academy of Sciences 85



Results with 2000 Tiest Samples
Each View

Stan Z. Li, Chinese Academy of Sciences 86



SVR Output for Nonfaces

Stan Z. Li, Chinese Academy of Sciences
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Face Alighment

ASM, AAM, DAM, TTIC-ASM



Stan Z. Li, Chinese Academy. of Sciences
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Active Shape Models (ASM)

Developed by Cootes, Tayler, ef al.

s ['he solution space is constrained: by PDM,
namely. the global shape space.

s |Locallappearance models derived at the
landmarks converge to the local image
evidence.

Stan Z. Li, Chinese Academy of Sciences 90



Eormulation oft ASM

Global Shape Model: s =58 +uUs
llocal Appearance Models:
(X, ¥)= argmin 9:(xy)-9;
(%, y)eN(x,yi")

Where 0; Is the average profile around
the I-th landmark, and =? Is the
covariance matrix of the sample profiles
for the I-th landmark.

Stan Z. Li, Chinese Academy of Sciences 91



Eormulation oft ASM

In each iteration, S, IS obtained from: the
refinement of the local appearance models,
the solutioni shape s is derived by
maximizing the likelihood probability:

S =arg max p(Si, |8) =arg min Eng(S,:9)
Where

Eng (Slm 1 S) = ﬂ“” Slm _Sllm ”2 w ” S— SIm "/2\

Stan Z. Li, Chinese Academy of Sciences 92



Active Appearance Models(AAM)

Cootes proposed and developed! the Active
Appearance Model (AAM)

x Built based on PDM.

= Shape and texture are combined for the
appearance modeling.

= Alignment is'guided by minimizing the texture
difference between modeland ground truth.

Stan Z. Li, Chinese Academy of Sciences 93



Formulation of AAM

Shape Model: s=5+Us
Texture Model: T=T +\t
Appearance Model:
AS
A:[ t j A=Wa
Iihe search strategies are based on the
liInear regression assumptions:

sa=AST  H=AST

Stan Z. Li, Chinese Academy of Sciences
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Direct Appearance Models



Shape and Texture Subspaces in AAM

Shape Is represented as s in PCA shape
subspace:

S =S8 +Us
Tiexture represented as £in PCA texture
subpspace e

I'=T+Vt

Appearance represented as alin appearance

subspace As
A= [ ) J =Wa

Stan Z. Li, Chinese Academy of Sciences 96



Problems with AAM

Shortcoming 1: In most case, dim (S, ) <
dim (S,): Tiherefore, some admissible textures
dre noet modeled in appearance subspace

Shortcoming 2: g and’ /@ are high dim Vectors.
S0, Very. large memory. IS reguired in learning

Aa INn 5g = A 6T

Stan Z. Li, Chinese Academy of Sciences 97



DAM Modeling

110 rectify: the shoertcomings, depend: s.entirely
On 4 e

s=Rt+¢

Reasons

= Intuitively, the same shape can enclose different
textures, however, the reverse IS not true.

= [he dimension of texture space IS much higher than
that of shape space.

Stan Z. Li, Chinese Academy of Sciences
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DAM Searching

Given current p.and shape s, get texture /;

Use the principle components of of to
predict the position displacement

& =R, 6T =R H'ST

Use warped texture 7& to predict next shape
s=Rt=RV'T

Goto 1;

DAM Learning: R,,H',andR

Stan Z. Li, Chinese Academy of Sciences 99



Advantages of DAM

DAM subspace includes the textures
previously unseen by AAM.

lhe convergence and' accuracy: are
Improved.

TThe memory reguirement s cut down to a
large extent.

Stan Z. Li, Chinese Academy of Sciences 100



Experiment Results

E(|o7]") E(H5PH2) Converge Rate
DAM (Training) 0.156572 0.986815 100%
AAM (Training) 0.712095 2.095902 70%
DAM (Test) 1.114020 2.942606 85%
AAM (Test) 2.508195 4.253023 62%

* The convergence is judged by the satlsfactlons of
two conditions: H5TH <0.5 and H5p” <3.

Stan Z. Li, Chinese Academy of Sciences
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Texture-Constrained ASM



Motivation

ASM:

s [ocallinformation statistics enable good landmark localization
(pro)
s Solution' often sub-optimal, depending onithe initialization (con)

AAM:

= Incorporate global texture evidence (pro)

= llinear assumption about texture variation to appearance and
position variation make it affected by illumination variation.

Jiexture constrained ASM: Inherit pros + Rectify, cons: +
New: optimization; strategy.

Stan Z. Li, Chinese Academy of Sciences 103



TC- ASM

Use the local appearance model o ASV
for landmark localization - less sensitive to

llumination vVaration.

Use global texture te constrain the shape -
ferr moere accurate estimation off shape
pParameters In eptimization; PreCEeSS.

Stan Z. Li, Chinese Academy of Sciences 104



TC-ASM

Jiexture-constrained shape model

= FOrthe edge or contour landmark, pesition
UnRCertainty, exists given the texture, Whilst there are
correlations between the shape and the texture for
the face pattern:

= [he conditional distribution of the shape s given
lexture t'Is assumead Gaussian:

p(s|t) oc N(s;\ 2,)
s [he shape s, can e derved from the texture t directly,
and Is assumed linearly dependent on t:

S, = Rt

Stan Z. Li, Chinese Academy of Sciences 105



TC-ASM

Search based on Bayesian firamework
m S IS ebtained from local’appearance modelsiasiin
ASM;

= [he texture t IS extracted from the shape S, and
shape S, is derived from: S, = Rt

= [lhe posterior(MAP) estimation: of the selution shape s
given Slmand S,

s=argmax P(s|Sy,s,)

_arg max PCOm 15,5 P(S S p(S,)
> P(Sy,. S;)

Stan Z. Li, Chinese Academy Or SCIENCES 106




TC-ASM

s Assuming S, IS independentto s, , given; s ,
We ebtain:

S = arg mglx P(Si, [S)P(s|s;)
=argmin{Eng(S, ;s)+ Eng(s;s,)}

> (A_l 3y Zt_l)_l (A_lslm T Zt_1 St)

Stan Z. Li, Chinese Academy of Sciences 107



Comparing AAM & TC-ASM
under lllumination Change

Sensitivities of AANM (upper) and TC-ASM (lower) to illumination condition not seen in the training data, From left to right are
he results obtained at the O-th, 2-th, and 10-th iterations.( Result in different level of image pyramid is scaled back to the original scale)

Stan Z. Li, Chinese Academy. of Sciences 108



Evaltiation ofi
ASM Alignment Results



Learning Evaluation Function

Using AdaBoost classifier output as quantitative
measure off alignment guality

G004
alignment

''''''

Bad
alignment

Stan Z. Li, Chinese Academy of Sciences 110



Evaluation Results

AdaBoost Output vs. Reconstruction Error

0.662 -0.510 - earning

1.243 220 4.472 -- Reconstr

-0.705 (.641 -(). 746

- Learning
-1.350 -3.190 2.935 -- Reconstr

Stan Z. Li, Chinese Academy of Sciences 111



Face Recognition

llocal Features + AdaBoost [.earning



Framework

|'ocall Features
= Eg: Haar, Gabor, LLBP, Ordinal, etc
= Having'good properties
= Form a High-Dim Space
Intra vs Extra Representation for Multi-class Problem

Statisticall .earning

s 2-Class Classification

= [raining on pos and'neg samples

= Nonlinear classifier: Eg AdaBoos, SVM
= l.earning for:

Dim reduction’ (feature selction)
Classifier construction

Stan Z. Li, Chinese Academy of Sciences 113



Intra vs Extra Representation:

N Class > Two Class
(Baback Moeghaddam)

N pEersons O
o) e

Compare 2 templates

Yes:

T1,T2 Same person

T1

» Dist(T1, T2) » < threshold?

No:
I T2 T1,T2 Diff person

Stan Z. Li, Chinese Academy of Sciences 114



[ntra- and Extra- personal
Variations In Image Space

(Baback Moghadaam)

Stan Z. LI, Chinese Academy of; SCiences 115



Representative \Works

Violar& Jones, papers 2001,2002
M. Jones, MERL TechReport 2003
i & Students, papers 2001-2005

Stan Z. Li, Chinese Academy of Sciences 116



| ocal Features



Good Features

Reduce extrinsic factors while keeping
IntrARSic factors unchanged

Simplerin shape than in (Mmage space

Individuall faces are still'separable
= By @ metrc matching, of templates
s Separable by a nonlinear boundary

Stan Z. Li, Chinese Academy of Sciences 118



|_.ocal Features

0 Haar
s Gabor wavelets

s |local binary patterns (LBP)
= Ordinal Features, etc

Dim expansion: More |local features than: pixels.

Stan Z. Li, Chinese Academy of Sciences 119



Working in Good Feature Space

= Mapinput image to a higher dim local feature space
= Reduce dim by learning good features

Local Feature
Features Iearnlng

Image Space Raw Feature Space Selected Feature Space

(high dim) (higher dim) (ovirt)

Stan Z. Li, Chinese Academy of Sciences 120
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Intra-Personal Variation - Gabor

Stan Z. Li, Chinese Academy. of Sciences 122



Extra-Personal Variation - Gabor

Stan Z. Li, Chinese Academy. of Sciences 123



Ordinal Features
(Liao, et al, ICB 2006)

2-pole,5-pole,4-pole Filters

e ‘Q e Q"'t:
SN

Parameters:o,d,6

Stan Z. Li, Chinese Academy of Sciences 124



24 ordinal filters used in the experiments

Stan Z. Li, Chinese Academy of: Science 125



Ordinal Encoding of Face

filter =  Threshold at 0 =» binary image

[eie ‘EﬁT‘"" %

iy, E’ig@& Q@




Differences of Ordinal Maps




Learning Good Local Features
and
Local Feature Based Classifiers



Feature Selection
By Statistical LLearning

Goals:
s Select good features from a large pool

= |.earn a sequence of: weak classifiers using good
features

s Combine them Into a strong classifier (the output
result)

AdVantages
s Few parameters to adjust
s [rained classifier works fast

Stan Z. Li, Chinese Academy of Sciences 129



As Result off AdaBoost Learning

Effective features are selected

A weak classifier Is constructed for each
feature

’he weak classifiers are combined into'a
strong one

EUsion at both feature and decision levels

Stan Z. Li, Chinese Academy of Sciences 130



Successful Applications

2D Face Detection &t Recognition

= \Viola & Jones, Haar + boosting for face detection &
recognition

s Li'and students
Haar / Gabor / LBP. /- Oridinal’ 4+ boosting, 2001-2005

3D and 3D+2D Eusion
= LI and students, 2005

NIR Face Recognition
= |Li'and students, 2004-2005

Stan Z. Li, Chinese Academy of Sciences 131



fearning Fusionroei SPD+2b
at Feature and Decision Levels



Motivation

a
L’v \
\ -

2D and 3D modals

= dre both useful
= but contribute in different ways

2D+ 3D fusion
s Performs better than 2D or 3D alene
= currently: done (mostly) at decision level

2D4-3D fusion at feature level could be advantageous
(Bowyer, Chang, Flynn;2004)

2D+ 3D fusion could be even better If fusion at both feature
and decision levels (this paper)

We do this in the framework of “local feature + AdaBoost

learning”
Stan Z. Li, Chinese Academy. of Sciences 133



Background

PCA, LDA, ICA, EGBM, etc
l.ocal Feature + Booested Classifiers (2D)
3D’ range imaging (BesliandiJain, 1985)

243D multi-moedel face biometrics (Bowyer, Chang, and
Elynn, 1CPR 2004)

243D fusion performs better than using either 3D or 2D
alone (Chang, Bowyerand Elynn, PAMI 2005)

Stan Z. Li, Chinese Academy of Sciences 134



5D Face Recognition

Using 3D, infermation: shape, depth

. 2D face recognition : : 3Dface recognition :
: problem 5% resolution

Illumination H Laser scanner
Pose H Exact registration

Stan Z. Li, Chinese Academy of Sciences 135



Processing 3D Face Recognition

Data
Acquirement

=) Preprocess

Feature
Extraction

Templates )

Stan Z. Li, Chinese Academy. of Sciences

Template
o 1101...

1

Classification

|

ID
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Preprocess for 3D

Shift & Cubic Nearest
Rotation interp0|ati0n filter

1 RIE B

Preprocess for 2D
Alignment

Histogram Mask
equalization

Stan Z. Li, Chinese Academy of Sciences 137
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L BP Local Features

180 | 176 168

= 11| [0
1169 [174|170]

Examp le Threzhold Pattern

Extracted for every pixel location
N 3D'and 2D’ images

Stan Z. Li, Chinese Academy of Sciences 139



LBP Histograms for
SUup-Windoews

An LBP Histegram

x 256 bins for un-restricted LBP. code
x 59 bins for uniform LBP. code
s Subject torsub-windew: size

An LBP histogram computed for each location
WIth' a given Window: size

Distance btw: 2 histogram — Eq.(2)
Narwe distance btw: 2 LBP feature templates:
summing up; for all' locations and WInAdow: Sizes

Stan Z. Li, Chinese Academy of Sciences 140



3D+2D Fusion

e
=
BTN

R % \
3D data

i »

i |

Al

2D data

Generate a large number of Local Features
Boosting learning to;select best fieatures
Eusion at both feature and decision level
Better 3D’ results and 3D+-2D results

Stan Z. Li, Chinese Academy. of Sciences 147



EXperiments

Compared Methods

s CBE (Chang, Bowyer, Elynn 2005) fusion
2D, 3D Metrics distance in' PCA spaces
Weight = (dist2— dist1)/(dist3-distl)
(distl, 2,3 are ranked distances for a probe)
= Score fusion
Compute scores of boosted classifiers for 3D & 2D
Addition of' the boosted scores (better than CBE addition)

s Feature+-Score fusion (propoesed method)

Stan Z. Li, Chinese Academy of Sciences 142



Data Sets

3D Dafa Num. of [mages|Num. of Persons

Alignment Results

Stan Z. Li, Chinese Academy of Sciences 143



Features Learned for 3D or 2D

Fig. 5. The first 5 features for 3D (top) and for 2D (bottom) learned by AdaBoost.

Stan Z. Li, Chinese Academy of Sciences 144



3D or 2D Boosted Classifiers vs. PCA

Cumulative Match Curve

~i-|“-Boosting 2D |

|>=PCA2D |

. 'E'Bﬂﬂﬁﬁl'lg aD
_ #=PcAd |
8 10 12 14 16 18 20
RANK

Stan Z. Li, Chinese Academy of Sciences 145



Features Learned for 3D+2D

Fig. 7. The first 10 LBP features learned by boosted fusion of 3D+2D. ranked 1 to 10 from left to

right, from top to bottom. Among these top 10, 7 features are from 3D data and 3 from 2D.

Stan Z. Li, Chinese Academy of Sciences 146



Comparison of 3 Fusion
Methods

Cumulative Match Curve

i
E E
g

&” éBoosﬁng Feature Fusion
“-Boosting Score Fusion
=PCA CBF Fusion

10 12 14 16 18 20
RANK

Stan Z. Li, Chinese Academy of Sciences 147



Conclusion

Novelties
s First using LBP Feature on 3D’ face recognition
s First Adaboost learning for 3D Features

= First fusion off 2D+-3D at both fieature and
decision levels, using Adaboeoest learning

Advantages demonstrated

Stan Z. Li, Chinese Academy of Sciences 148



[Face Recognition
Using Near Infrared Images



Intrinsic vs. Extrinsic Factors

EXtrinsIic Variations
[llumination

flacial expression
head pese |
facial hair, cosmetics = I
accessories (eyeglasses, etc) ‘ |/

= [Mage size and quality
Intrinsic Infe L

= (1) Inforspecific to faces (for face/nonface
classification)

= (2) Inferspecific for identity: classification (1dentity:
dimension, for face recognition)

= Immune from extrinsic factors

Stan Z. Li, Chinese Academy of Sciences 150



Imaging Models

Face is a 3D
Physical Imaging Model

](x,y) — p(x,y) nT(x,y)S

(EamberntianiViedel)

Imaging Factors

s Shape 7n(x y) — Intrinsic factor

= Albedo p(x; 37) — Intrinsic factor

s lllumination s= (s, s, S5) — extrinsic factor

Stan Z. Li, Chinese Academy of Sciences 151




Intrinsic Part off Face Image

Face Image Model (Lambertian)

](x,y)= p(x,y)nT(x,y)s
=F" (x.y)s

ET=pn’ --the intrinsic factor of face identity

Stan Z. Li, Chinese Academy of Sciences 152



Strategies for Better Accuracy

Remoyve Extrinsic Factors firom Images
= 5 Modeling - Vision' liechnigues

s Morphable Models — Image and Learning
s Advanced Sensors — This Work
Recognition Based on Intrinsic Factors
only

s Capturing both 3D’ information and
reflectance of facial surfaces — This Work

Stan Z. Li, Chinese Academy of Sciences 153



Near Infrared Face Recognition

AdvVantage
s [llumination invariant face recognition: Method

= Highly accurate and fast
s Can work In dark environment

Stan Z. Li, Chinese Academy. of Sciences 154



AuthenMetric
NIR Face Recogniton System

For Cooperative Applications
s Access control, E-Passport, ATM, etc

Features

= Novel NIR‘Image capture device ter minimizes
Infiuence off environmental lighting

= Recognition Classifier learned using: LBP features +
AdaBoost

Performance
s Stable in environmental lighting ofi 0-50,000! LLux
= Accurate and fast system in “Scenario lests”

Stan Z. Li, Chinese Academy of Sciences 155



NIR Imaging Hardware

IR Camera
Color Camera

](x,y) = p(x,y)nT(x,y)S

with s = (0,0,1)
:FT(x, )S -
S Z. L

I, Chinese Academy. of Sciences 156



Performance Comparison:

LBP+Boosting vs PCA ve LDA

)
o
w©
o
c
o
2
@
Q
=
[
o
-

| X 0.001073
L Y:09179

ROC Cune in Detail

X: 0.00108
L Y:0.6237

¢ X:0.001028
| Y:0.3199

—— | DA

i OUI Method |

0.004 0005 0.006 0.007 0.008 0.009 0.01
False Accept Rate
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Scenario Tests

| [#Persons [# Sessions|# Sessions Accepted|# Sessions Rejected
I N N

e s A
Bdgowdid®) | | [ [

Table 1. Scenaro evaluation statistics.

Stan Z. Li, Chinese Academy of Sciences 158
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NIR Face Products

Platform: PC based and Embedded

Working Mode: Onling, offline, networked

Stan Z. Li, Chinese Academy. of Sciences 159



NIR Face+Iris Multimodality

Right Eve

Face + Iris Unified

= Multimodality.

= [n a single shot

= NIR imaging for both
s Non-intrusive

IFIS as part off face

Challenge
s Effortless Imaging

Stan Z. Li, Chinese Academy. of Sciences



Heterogeneous Face
Recognition



Heterogeneous Face Biometrics (HFB)

(L

o )
)

L’

dg
Visible vs. NIR vs. 3D vs. Thermal NIR

FEeterogeneous Iypes off Face Im

Face MatChing across FHeterogeneous 1YpPeS

Stan Z. LI, ChineselAcademy ofi Sciences



HEBS in Broad Sense

VIS type ofi face Images
s CCD vs. CMOS sensors,
= Photo scan,
= face sketch,
= under different illumination conditions,
= Of different image resolutions,
= of different image quality.

Stan Z. Li, ChineselA8ademy of Sciences



Significance off HFB Research

As standalone face biometric technology.
AS an added module for multimodal face recognition

Addressing underlying ISSUes in existing face
DIOMELrIES

Research and development on HEBS investigate
problems caused: by heterogeneities in
10MOJgENEDUS fiace biometrics and may: lead to
petter solutions

PrOVIAES NEW directions for face based BIomELtrICs;
Imagde analysis, pattern recognition and machine
learning

Stan Z. Li, ChineselAéademy of Sciences



Research Issues

Understanding heterogeneous Imagde formation models
Discovering relations between heterogeneous: IMages
Formulating transformation of one type to anoether
Common feature extraction

Matching across heterogeneous images

CASIA Heterogeneous Face Biometrics (HEB) database

http://wWww.cbsr.1a.ac.cn/english/HEBY20Databases.asp

Stan Z. Li, ChineselAGademy of Sciences



Influence on NIST Projects

NIST CNational Institute of Standards and Tiechnology)
Multiple Biometric Grand Challenge (MBGC 2008)

= Include NIR Face Video and VIS Color Face images
» Input: NIR face image

= Enrollment: VIS face image

= NIR vs VIS

= Partial Face Matching

Near Infrared (NIR)

N

LI N e e .
. " v A ',', -4 , - ! ' 4
. | e "{‘?‘”

e e »
High Definition (HD) Video 26

Stan Z. Li,_Chinese A€ademy.of Sciencess & =



Some More Applications



Biometric Border-Crossing: ShenZhen — HongKoeng

400,000 border-Crossings every. day

W0 scenarios: Passengers & Vehicle Drivers
150 gates deployed by now.

wo Modalities: Face & Fingerprint

1,600,000 people enrolled.

Verification Speed: 6 sec /' crossing

¥, ( i
‘\ et <y 1 Taad
"\; L |l\ i AR ’ ?é
r'm &l e | pres=
Stan Zi L| Chlnese Academ}/’éf SC'%




Beljing Olympic 2008

REID; tickets associated with identities
Verification of identity;
\/ideo capture Vs photo scan

Stan Z. Li, Chinese Academy. of Sciences 169



Face Recognition on Mobile

Ubiquitous face recognition

Wireless

- = rl‘ %‘ﬁ
(g’;e Az@y of&ceé’% 3 BA

Face Matching Engine 8 \
Stan Z. L, | v 170



Mobile Recognition Results

e BERLICHE & Yy x A BERLICHE & Y x ([ a2 EEREILFE & Y ¢ [
1R RIETE - 2010-10-14 17:09:56 1R RIETE - 2010-10-14 17:07:18 1R RIETE - 2010-10-14 17:07:59

. . “ I l

HERRA HERA ABE#EE RRB A

alexander nouak A Nouak
0.89% 0.33%

'\- U y ym{j |

> Jg;'\

Stan Z. Li, Chinese Academy. of Sciences 171



Ubiguitous Face Recognition
- A unified platform

Face Image Data
Aquisition Transmission

Comparison

Face

B Console
Database

Stan Z. Li; Chinese Academy of Sciences 172



e and
oNn

Face Survelll

llanc
Jér CJ i[0)p

5 FUSe liace recognition, opject thacking ana: Ia.
s« Comparisen with watcn-list

Discovery Regort Deployed

Stan Z. Li, Chinese Academy. of Sciences 173
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More Challenges



Spoofing Attacks

Printed Photo, Video Replay, 3 Model

Stan Z. Li, ChineselAGademy. of Sciences



Reported Cases

Case 1. A young man,
disguised as an old, cheated
Canadian Airline security,
10-29-2010.

Case 2. Google phone
“Face Recognition Unlock”
function can be easily
spoofed by photos, 2011.

Stan Z. Li, Chinese Academy. of Sciences 176




Face Anti-spoofing

To classify a live face from fakes
HCI-based methods: Challenge-Response

Computer requires the subjects to exhibit specific
facial motions, the detection of which determines
the liveness.

Multi-modality methods:

Face, voice, gesture modalities, ...

Stan Z. Li, Chinese Academy. of Sciences 177



Spoofing Attacks

Face spoofing can be more than one might think ...

Stan Z. Li, Chinese Academy. of Sciences 178



Nonintrusive Solution: Multispectral Tecns

~ Imaging faces beyond visible spectrum
. Analyze refrlectance property

- Train statistical model

400NMm 500NMm V1S

179

%

Stan Z. Li, Chinese Academy of Sciences



Previous Results

« =photo face

== == genuine face

Q
=
@
>
©
=]
‘=
o
o
w

distance(cm)

Attack Detection ACCUTaCY

Genuine vs Photo 92.2%
Genuinevs Video Replay 110/0)%

Genuine vs Mask 89.2%

Stan Z. Li, Chinese Academy of Sciences 180



CASIA Face Anti-spoofing Database

A diverse and comprehensive database for
evaluatlng anti- spooflng techmques

Baseline evaluation under
different scenarios — provided

DETcunvas

Stan ZR% S ciences
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Unsolved Problems

Make up Facial Wear

Aging

Stan Z. Li, ChineselBgademy. of Sciences
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c B S R Center for Biometrics and Security Research
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Centerior BIemeties anu SECURy RESEANChH

Institute o Autemation, Chinese Academy of SCIENCeS
WWW.CHST.Ia.ac.cn
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Goal: To achieve excellence in R & D

BIometrics Intelligent surveillance
= Face = Security: surveillance

= Iris s [raffic surveillance

s Eingerprint = Object detection,

s Palmprint classification, tracking
= Gait = Abnoermalievent

= Signature UETECHON

Stan Z. Li, Chinese Academy of Sciences 184



Commercial: The Face Handbook

Wt rgorortee com

Handbook of Face Recognition
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