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Introduction 



Face Recognition Process 

1. Face Detection 

2. Face Tracking 

3. Face Alignment 

4. Face Recognition 
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@ Microsoft Techfest 2002 
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 Face Recognition System 
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Face Tracking (MSR) 

 Input:  
 Video containing 

moving faces 

 Output: 
 Locations, scales, 

 and poses of  

 tracked face  
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Face Alignment 

 Input:  

 Face detection/tracking 
output (location, scale, and 
pose) 

 Output: 

 Accurate localization of facial 
landmarks / outline 

 Purpose: 

 For geometric normalization 
towards accurate facial 
feature extraction  
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Face Matching 

 Feature Extraction 

 Matching 

 Decision (Identification, 
Verification) 

。。。。。。 

Face 

Database 

Face Input 
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Face as Compared to  
Other Biometrics 

 Universality  -- H 

 Acceptance  -- H 

 Easy to acquire-- H 

 Permanence  -- M 

 Reliability  -- M-H 

 Uniqueness  -- L 
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Face Recognition R&D 

 Applied Basic Research 

 Image processing 

 Vision – pose, lighting 

 Pattern recognition 

 Statistical learning 

 Subspaces & manifolds 

 Algorithm Research 

 Face detection 

 Face tracking 

 Face alignment 

 Feature extraction 

 Face Matching 

 System development 

 Application Development 
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History (60-70’s): 
Geometric Feature Based Approach 

 In traditional AI-CV  framework 

 Image features pre-specified 

 Features= 

 {type, locations, distances} 11 



History (90’s -):  
Learning-Based, Subspace Analysis Approach 

 Different from the AI-CV approach 

 Example-based 

 Features Learned 

 Dimension reduction 

 Linear mapping from high-dim to low-dim spaces  

 Linear Subspace Methods: Eigenface (PCA) 
and Others 

 Face Representation: Kirby & Sirovich. 1990. 

 Face Recognition: Turk & Pentland. 1991. 

 Nonlinear Methods 

 (More contemporary  work). 
- .... 
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Year 2002: EyeCU at MSR Techfest 

13 Stan Z. Li, Chinese Academy of Sciences 
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Year 2005: AuthenMetrics of CBSR 

 E-Passport at China-Hong Kong Boarder 

 E-Passport at China-Macau Boarder 

 Access-control in “Beijing” 

 Others 

MRTD System 
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Challenges in  
Face Recognition 

 Image Changes due to Variations in 
 Geometry (Head pose, Facial expression) 

 Photometry (Illumination, Camera properties) 

 Other Variation Factors 
 Aging, Facial hair, Cosmetics, Accessories 

(eyeglasses, etc) 

15 Stan Z. Li, Chinese Academy of Sciences 



Outline 

1. Introduction to Face Recognition 

2. Linear Subspace Analysis 

3. Nonlinear Subspace Analysis 

4. Research in MSRA Face Group 

5. Face Recognition Evaluation 

6. Future Perspectives 
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Linear Subspace Analysis 



Subspace Modeling 
Dimension Reduction  
Feature Extraction 

 Eg: Images of size 64x64 

 Dimensionality of image space: 64x64=4096 (pixels) 

 Pixel values in {0,…,255} 

 256^4096 > 10^9864 possible configurations in 
4096-dim hypercube 

 Face pattern living in low dim subspace  
 Dimension reduction (features = projected 

coordinates) 
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Dimension Reduction  

Given {xi in RN | i=1,…,K}, find 
1. A space Rn  

2. Dimension Reduction Mapping 
  y=F(x): RN  Rn 

3. Reconstruction Mapping (Smooth, Non-Singular) 
  x=f(y): Rn  M (a manifold in RN) 

Such that 
1.  n<N as small as possible 
2.  M approximately contains {xi } 

  (reconstruction error is small)  

Note that f(F(x)) needs not be x (identity mapping) 

19 Stan Z. Li, Chinese Academy of Sciences 



Linear Subspace Analysis 

 Linear projection: n dim  m dim, m<n 
 h=Px      x: nx1, P: mxn, h: mx1 

 Reconstruction x=Bh,    B: nxm 

 Matrix Factorization 
   

  where X: nxN, B: nxm, H: mxN 

 Principal component analysis (PCA) 

 Vector Quantization (VQ) 

 Independent component analysis (ICA) 

 Non-Negative Matrix Factorization (NMF, LNMF) 

 Linear Discriminant Analysis (LDA) 
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PCA, VQ, NMF, and LNMF 

  

Method Constraints 

PCA b orthonormal vectors 

VQ h unary vectors 

ICA h independent 

NMF b,h non-negative vectors 

LNMF b,h non-negative + h sparse  

 b really part-based 

21 Stan Z. Li, Chinese Academy of Sciences 



PCA Representation  

 Basis vectors = Principal eigenfaces 

1st 2nd 3rd 4th 5th 6th 7th 

= 0.9569 X - 0.1945 X + 0.0461 X + 0.0573 X - .... 

Original Face 1st 2nd  3rd 4th 

 Face as linear combination of eigenfaces 

Y=[0.9569, - 0.1945 , 0.0461, 0.0573, …, ] 
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Independent Component Analysis 

H components as independent as possible 
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Learning View-Subspaces by Using 
PCA, ICA, ISA, TICA (Li et al 2001) 

  

  

PCA ICA ISA TICA 

view-specific n Y Y Y 
View-grouping n n Y Y 
View-ordering n n n Y 
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Non-negative Matrix Factorization 

 Papers: 

 Lee and Seung, Nature , 1999 

 Lee and Seung, NIPS, 2001.  

 Non-negative Matrix Factorization  

min D(X||BH),  s.t. B,H >=0 and            for all j 

        Basis Components learned by different methods 

NMF  VQ  PCA Training Example 25 



Problems with NMF 

1. Learned components not really localized, part-based 
2. Face recognition not very good 

NMF Results Learned From: 

    Lee-Seung’s Data               ORL Data              Our Data 
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Local Non-negative Matrix Factorization 

 Additional constraints imposed on NMF 

 for spatially localized, part-based representation 

 LNMF      NMF            PCA 

     Comparative results learned from ORL data: 

27 
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Additional Constraints  
                     .    Let  
 

1. Maximum Sparsity in H. A basis component       
should not be further decomposed into more 
components. Given          ,                            
should be minimized for all j: 
 
 

2. Maximum total activity. Retain most 
expressive components: 
 
 

3. Orthogonality of basis: 
  

28 
Stan Z. Li, Chinese Academy of Sciences 



Learning by  
Constrained Optimization 

 

 NMF 
min 

       s.t. B,H>=0,  

 LNMF = NMF + localization constraints 
min 

      s.t. B,H>=0,  
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LNMF Learning Algorithm 

 
1.   

 

 

2.   

 

 

3.    

 

 

Convergence proved. 
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Comparison of  
PCA, NMF and LNMF Bases 

   LNMF       NMF           PCA 31 
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LNMF vs NMF 

   LNMF                                      NMF  
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Nonlinear Subspace Analysis 



Face Detection and Recognition 
- From Manifold Viewpoint 

Detection 

nonface 

face 

Recognition 

face 

Faces 

Nonfaces 

Person 2 

Person 1 
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Beyond Linear Subspaces 

 Face subspaces are nonlinear manifolds 

 Manifolds of faces and nonfaces (detection) 

 Manifolds of different persons (recognition) 

 Nonlinear Separability of face manifolds 

 Faces/Nonfaces are separable in image space 

 Face 1 / Face 2 / … / Face N are also 

separable 

 Yet, highly nonlinear and interweaving 
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Dimensionality of Nonlinear Subspace 

 Linear Space: Spanning dimension (basis 
dimension) 

 Intrinsic dimension (latent dimension): the 
smallest number of parameters to model the 
data without loss. If it is d, then the observation 
(of dimension n>d) is generated by 

X=H(v1,…,vd) 

 Topological space (local dimension): the basis 
dimension of the local linear approximation of 
the hypersurface on which the data resides. 
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Nonlinear Subspace Illustration: 

  

Linear projection onto 

the x1-x2 subspace   

(2-D) as a circle. 

Nonlinear projection 

onto the t subspace (1-

D) as a straight line. 
37 Stan Z. Li, Chinese Academy of Sciences 



Intrinsic Dimension Estimation 

• Using Neighborhood Information (Jain, Dubes 

and Students. IEEE-PAMI. 1979). 

• Packing Number Methods (Kegl 2002) 
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Nonlinear Subspace Analysis 

 Recent Advances 
 ISOMAP (Science, 2000) 

 LLE (Science, 2000) 

 Laplacian EigenMap (NIPS, 2001) 

 Properties 
 Count for interaction within 

neighborhood  

 Non-orthogonal projections 

 Advantages 
 Lead more sensible modeling 

 Discover intrinsic dimensions 

 Disadvantages 
 Increased computation 

 Need to work out a mapping 

39 Stan Z. Li, Chinese Academy of Sciences 



ISOMAP 

  
 ISOMAP = Geodesic dist + MDS 

• Metric MDS is used to recover 
parametrizations in lower dimensional space 

40 Stan Z. Li, Chinese Academy of Sciences 



ISOMAP Results 

  

41 Stan Z. Li, Chinese Academy of Sciences 



Locally Linear Embedding (LLE) 

 In the high dim space find W 

 

 

     s.t. ∑iWij=1 

 In the low dim space find Y 
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LLE Result: 
Pose and Expression 

Dimensions  

43 Stan Z. Li, Chinese Academy of Sciences 



Face Grand Challenges  
- From Subspace Viewpoint 



Challenges in Face Recognition 

 Complexity of nonlinear face manifolds 

 Problem in Generalizing 
 Limited Training Data  

 When lighting changes 

 When pose changes 

 Daily changes and aging 

 When Camera property change 

 Euclidean Geometry Inappropriate in 
image space 

45 Stan Z. Li, Chinese Academy of Sciences 



Rotated Faces 
 in PCA Subspace 

46 Stan Z. Li, Chinese Academy of Sciences 



Scaled Faces 
 in PCA Subspace 

47 Stan Z. Li, Chinese Academy of Sciences 



Translated Faces  
in PCA Subspace 

Manifolds are Folding and Interweaving 
48 Stan Z. Li, Chinese Academy of Sciences 



PCA Subspace of “Re-Lighted” Faces 

49 Stan Z. Li, Chinese Academy of Sciences 



Subspaces in 
Detection and Recognition 

Detection 

nonface 

face 

Recognition 

face 

Faces 

Nonfaces 

Person 2 

Person 1 
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Subspaces in 
Face Recognition and Gender Classification 

Recognition 

face 

Person   1 

Person 2 

Gender 

Male 

Female 
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Non-Euclidean Geometry 

 Euclidean Geometry 

 Inappropriate 

 Need to model 

 manifolds in 

 Non-Euclidean 

 Space 

 Geodesic distance 

face 

Person 1 

Person 2 
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Separability in  
Image and Feature Spaces 

 Individual faces Separable in image space 
 Complex, but separable 

 Difficult to separate in feature space  
 Overlapping in feature space due to information loss 

 

face 

Person   1 

Person 2 

Dim 

Reduction 

Overlapping 

area 

Image Space Feature Space 53 Stan Z. Li, Chinese Academy of Sciences 



Face Detection 



Face Detection: Approach 

 Scan the image with subwindows of 
varying size and location 

 Classify a subwindow x into face/nonface 

 Need a “strong classifier” for accurate 

classification 

 Post-processing: Merge multiple detects  

Faces 

Nonfaces 
55 Stan Z. Li, Chinese Academy of Sciences 



State-of-the-Art Methods: 
Local Features + Boosting 

 Viola & Jones, 2001 

 Haar Features + AdaBoost + Cascade 

 Schneiderman & Kanade, 2000 

 Wavelet Histograms  

 Li, et al, 2002 

 Extended Haar Features + FloatBoost + Pyramid 

 Haizhou Ai, et al, 2003-2005 

 Omni-view face detection, Haar feature + Boosting + 
More advanced architecture 

56 Stan Z. Li, Chinese Academy of Sciences 



AdaBoost Method 
(Viola & Jones) 



Simple Haar features  
(Viola & Jones) 

     3 rectangular features types: 

• two-rectangle feature type    

 (horizontal/vertical) 

• three-rectangle feature type 

• four-rectangle feature type 

These rectangular features, as opposed to more 

expressive steerable filters, can be computed very 

efficiently using integral images. 

Using 24x24 windows  49,396 features.  
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Integral Images  
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AdaBoost Learning 

 Proposed by Freund et al 1997, 1998 

 Task: Given {(xi, yi)}, learns HM(x) so that yi= sign(HM(x)) 

 Learns and combines a sequence of weak classifiers hm(x) 
into a strong classifier 

 

 

 

 hm (x) are learned in stages to minimize error bound (see 
later) 

 

 Associate (xi , yi) with weight wi  and reweight after each 
iteration (see formula later) 





M

m

mm xhxHM

1

)()( 
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Weak Classifiers 

 One WC for a scalar Haar feature 

 WC outputs face/nonface by comparing 
the scalar value with a threshold 

 Best threshold obtained by examining the 
weighted histogram 

61 Stan Z. Li, Chinese Academy of Sciences 



Learning Weak Classifiers 
Based on Weighted Histogram 

62 Stan Z. Li, Chinese Academy of Sciences 



Best Features Learned 

 First features selected by AdaBoost are 
meaningful and have high discriminative power 

  By varying the threshold of the final classifier 
one can construct a two-feature classifier which 
has a detection rate of 1 and a false positive 
rate of 0.4.   

63 Stan Z. Li, Chinese Academy of Sciences 



Speed-up through Cascade 

 Simple, boosted classifiers can reject many of negative 
sub-windows while detecting all positive instances. 

 Series of such simple classifiers can achieve good 
detection performance while eliminating the need for 

further processing of negative sub-windows.    

 

64 Stan Z. Li, Chinese Academy of Sciences 



FloatBoost Method 
Li, et al 



AdaBoost: Advantages 

 Provably effective provided that hm  are “good 
enough” 

 Generally does not overfit 

 Does overfit when data contains outliers 

 a less complex classifier (combining fewer weak 
classifiers) is preferred 

 Simple and easy to program 

 Almost no parameters to tune (except M, #WC) 

66 Stan Z. Li, Chinese Academy of Sciences 



AdaBoost: Problems 

1. A sequential, local minimizer 

2. May overfit when too many weak classifiers 

are combined (recent studies) 

3. “Detachment” between cost function and 

error rate 

4. Need methods for learning weak classifiers 

67 Stan Z. Li, Chinese Academy of Sciences 



FloatBoost Project: Objectives 

 Better boosting learning: To address  (1-3) 
by incorporating Floating Search (Pudil, 
Novovicova & Kittler, 1994) 

 Weak classifier: For (4), to derive formula 
for efficient approximation of weak 
classifier 

 Fast multi-view face detection: System 

68 Stan Z. Li, Chinese Academy of Sciences 



FloatBoost =  

AdaBoost + FloatingSearch 

 Procedure 
1. Boosting to add one weak classifier 

2. If removing a weak classifier leads to a maximum 

improvement (eg in error rate), remove the weak 

learner and go to 2 

3. If termination condition not satisfied, go to 1 

 Results in a strong classifier of less 
complexity with improved performance 

69 Stan Z. Li, Chinese Academy of Sciences 



Learning Weak Classifiers 

 RealBoost learns a strong classifier of the form 

   HM(x) =h1(x) + h2(x) + …+ hM-1(x) + hM(x) 

 in stages to minimize the error bound: 

 

 

 Given the first M -1 weak classifiers, the best, ideal 
M-th is derived as 

     

70 Stan Z. Li, Chinese Academy of Sciences 



Extended Haar Features 

 Three types of fk  

 

 

 

 

 

 A total of K>400,000 such features 

 They are overcomplete for representing x 
71 Stan Z. Li, Chinese Academy of Sciences 



Weak Classifiers 

 

 Problem: estimation of p(x |y, w) or LM(x) is 
difficult for high dimensional data x 

72 Stan Z. Li, Chinese Academy of Sciences 



Approximating p(x | y, w)  

 Design weak classifiers in 1-space instead of 400-D 

space 

 Design a dictionary of candidate scalar features of x: 

   { fk(x) | k=1,…,K  } -- see later 

 

 Given                          selected by previous stages, 

approximate   
 

73 Stan Z. Li, Chinese Academy of Sciences 



Uni-Variate Weak Classifiers 
 

 Construct a dictionary of candidate weak classifiers  

 

 

 where 

 

 

 

 Find the feature k   so that           best fits hM(x) w.r.t. 

training data {xi}, and take 

74 Stan Z. Li, Chinese Academy of Sciences 



 

 

combine 

 Coarse to fine  

 view partition: 

 

Dealing with Out-of-Plane Rotation 

75 Stan Z. Li, Chinese Academy of Sciences 



Detector-Pyramid 

Level  1 2 3 Total 

Time (ms) 110 77 15 202 

Method V-based Det.Pyr 

Time (ms) 967 202 

76 Stan Z. Li, Chinese Academy of Sciences 



Dealing with In-Plane Rotation 

 Boosted face detector covers +- 15 deg 

 Rotating the image by +-30 deg 

 As result, +-45 deg can be covered 

Merged 

Output 77 Stan Z. Li, Chinese Academy of Sciences 



Multi-View Face Detection 

 Fast MV FD system 
reported (5 fps) 

 Gives pose estimate 
while detecting faces 

 Face detection and 
recognition demo 
tomorrow 

78 Stan Z. Li, Chinese Academy of Sciences 



Conclusions 

 FloatBoost learns a strong classifier of less 
complexity than AdaBoost (hence less 
overfitting)  

 Formula for uni-variate approximation of 
ideal weak classifiers 

 Fast multi-view face detection system 

 Future work:  
 Dealing with outliers in learning 

 Improving training efficiency by sub-sampling 
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Face Pose Estimation 
 



Facial Pose Estimation 

 Approximately 75 percent of the faces in 
home photos are non-frontal 

 Task: to estimate the angle of head 
rotation 

 

out-of-plane rotation 
81 Stan Z. Li, Chinese Academy of Sciences 



 Unsupervised learning (eg using ICA) 

 Pose clustering and pose classification learned 
using pose-unlabeled face data 

 Supervised learning 

 Pose clustering and pose classification learned 
using pose-labeled face data 

 

Approaches 

82 Stan Z. Li, Chinese Academy of Sciences 



Supervised Learning of Nonlinear Mapping 
for Pose Estimation 

x: 400-D y: 10-D q: 1-D 

Regardless of illumination 

           and identity 
SVR training objective: 

83 Stan Z. Li, Chinese Academy of Sciences 



Pose Estimation Using SVR Array  
(Li et al ICCV’01) 

View-Specific SVR’s: 

 

 Supervised Learning of Nonlinear View-
Subspaces 

 From View Labeled Training Data  

 Illumination-invariant 

SVR     is trained to output: 

84 Stan Z. Li, Chinese Academy of Sciences 



Illumination-Invariant,  
View-Specific Signature 

   a=90 degree         a=40 degree   a=0 degree 
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Results with 2000 Test Samples 
Each View   

86 Stan Z. Li, Chinese Academy of Sciences 



SVR Output for Nonfaces 

  

  

87 Stan Z. Li, Chinese Academy of Sciences 



Face Alignment 
 

ASM, AAM, DAM,TC-ASM 



AAM/DAM 

89 Stan Z. Li, Chinese Academy of Sciences 



Active Shape Models (ASM) 

 Developed by Cootes, Taylor, et al.  

 The solution space is constrained by PDM, 
namely the global shape space. 

 Local appearance models derived at the 
landmarks converge to the local image 
evidence. 

90 Stan Z. Li, Chinese Academy of Sciences 



Formulation of ASM 

 Global Shape Model: 

 Local Appearance Models: 

 

    

   Where     is the average profile around 
the i-th landmark, and      is the 
covariance matrix of the sample profiles 
for the i-th landmark. 

UsSS 
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Formulation of ASM 

 In each iteration,    is obtained from the 
refinement of the local appearance models, 
the solution shape s is derived by 
maximizing the likelihood probability: 

 

   where 

lmS

);(minarg)|(maxarg sSEngsSps lm
s

lm
s



22' ||||||||);(  lmlmlmlm ssSSsSEng 
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Active Appearance Models(AAM) 

 Cootes proposed and developed the Active 
Appearance Model (AAM) 

 Built based on PDM. 

 Shape and texture are combined for the 
appearance modeling. 

 Alignment is guided by minimizing the texture 
difference  between model and ground truth. 

93 Stan Z. Li, Chinese Academy of Sciences 



Formulation of AAM 

 Shape   Model: 

 Texture Model: 

 Appearance Model: 

 

 The search strategies are based on the 
linear regression assumptions: 

UsSS 

VtTT 











t

s
A WaA 

TAa a  TAp p 
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Direct Appearance Models 
  



Shape and Texture Subspaces in AAM  

 Shape is represented as s in PCA shape 
subspace: 

 

 Texture represented as t in PCA texture 
subspace 

 

 Appearance represented as a in appearance 
subspace 
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Problems with AAM 

 Shortcoming 1: In most case, dim (    )  <  
dim (   ). Therefore, some admissible textures 
are not modeled in appearance subspace 

 

 Shortcoming 2: a and T  are high dim vectors. 
So, very large memory is required in learning 
Aa in  

97 Stan Z. Li, Chinese Academy of Sciences 



DAM  Modeling 

 To rectify the shortcomings, depend s entirely 
on t, ie 

 

 Reasons 

 Intuitively, the same shape can enclose different 
textures, however, the reverse is not true. 

 The dimension of texture space is much higher than 
that of shape space. 

     

98 Stan Z. Li, Chinese Academy of Sciences 



 DAM Searching 

1. Given current p and shape s, get texture T; 

2. Use the principle components of      to 
predict the position displacement 

 

3. Use warped texture T  to predict next shape 

 

4. Goto 1;  

 DAM Learning:  

99 Stan Z. Li, Chinese Academy of Sciences 



  Advantages of DAM 

 DAM subspace includes the textures 
previously unseen by AAM. 

 The convergence and accuracy are 
improved. 

 The memory requirement is cut down to a 
large extent. 

 

100 Stan Z. Li, Chinese Academy of Sciences 



  Experiment Results 

  

 

Converge Rate 

 

DAM (Training) 

 

0.156572 

 

0.986815 

 

100% 

 

AAM (Training) 

 

0.712095 

 

2.095902 

 

70% 

 

DAM (Test) 

 

1.114020 

 

2.942606 

 

85% 

 
AAM (Test) 

 

2.508195 

 

4.253023 

 

62% 

 

* The convergence is judged by the satisfactions of 
two conditions:                  and                . 
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Texture-Constrained ASM 
  



Motivation 

 ASM:   
 Local information statistics enable good landmark localization  

(pro) 

 Solution often sub-optimal, depending on the initialization (con) 

 AAM:  
 Incorporate global texture evidence (pro) 

 Linear assumption about texture variation to appearance and 
position variation make it affected by illumination variation.  

 Texture constrained ASM: Inherit pros + Rectify cons + 
New optimization strategy 

103 Stan Z. Li, Chinese Academy of Sciences 



TC- ASM 

 Use the local appearance model of ASM 

for landmark localization - less sensitive to 

illumination variation. 

 Use global texture to constrain the shape - 

for more accurate estimation of shape 

parameters in optimization process. 

104 Stan Z. Li, Chinese Academy of Sciences 



TC-ASM 

 Texture-constrained shape model 
 For the edge or contour landmark, position 

uncertainty exists given the texture, whilst there are 
correlations between the shape and the texture for 
the face pattern. 

 The conditional distribution of the shape s given 
texture t is assumed Gaussian: 

 

 The shape    can be derived from the texture t directly, 
and is assumed linearly dependent on t: 

),()|( ttsNtsp 

tRst 

ts
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TC-ASM 

 Search based on Bayesian framework 

      is obtained from local appearance models as in 

ASM; 

 The texture    is extracted from the shape     and  
shape    is derived from                .  

 The posterior(MAP) estimation of the solution shape s 
given     and    : 

lmS
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TC-ASM 

 Assuming     is  independent to    , given  s  , 
we obtain: 

lmS
ts
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Comparing AAM & TC-ASM 
under Illumination Change 

108 Stan Z. Li, Chinese Academy of Sciences 



Evaluation of  
ASM Alignment Results 



Learning Evaluation Function 

 Using AdaBoost classifier output as quantitative 
measure of alignment quality 

Good 

alignment 

Bad 

alignment 
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Evaluation Results  

 AdaBoost Output vs. Reconstruction Error 

-- Learning 

-- Reconstr 

 

 

 

 

-- Learning 

-- Reconstr 
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Face Recognition 
 

Local Features + AdaBoost Learning 



Framework 

 Local Features  
 Eg: Haar, Gabor, LBP, Ordinal, etc 
 Having good properties 
 Form a High-Dim Space 

 Intra vs Extra Representation for Multi-class Problem  
 Statistical Learning 

 2-Class Classification 
 Training on pos and neg samples 
 Nonlinear classifier: Eg AdaBoos, SVM 
 Learning for 

 Dim reduction (feature selction) 
 Classifier construction 

113 Stan Z. Li, Chinese Academy of Sciences 



Intra vs Extra Representation:  
N Class  Two Class 

(Baback Moghaddam) 

 N persons 

 

 

 Compare 2 templates 

John 

Peter 

Tom 

… … 

Dist(T1, T2) 

Yes:  

T1,T2 Same person 

T2 

< threshold? 

No:  

T1,T2 Diff person 

T1 
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Intra- and Extra- personal 
Variations in Image Space 

 (Baback Moghaddam) 
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Representative Works 

 Viola & Jones, papers 2001,2002 

 M. Jones, MERL TechReport 2003 

 Li & Students, papers 2001-2005 
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Local Features 



Good Features 

 Reduce extrinsic factors while keeping 
intrinsic factors unchanged 

 Simpler in shape than in image space  

 Individual faces are still separable 

 By a metric matching of templates 

 Separable by a nonlinear boundary 

118 Stan Z. Li, Chinese Academy of Sciences 



Local Features 

 Haar 

 Gabor wavelets 

 Local binary patterns (LBP) 

 Ordinal Features, etc 

 

Dim expansion: More local features than pixels. 
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Working in Good Feature Space 

 Map input image to a higher dim local feature space 

 Reduce dim by learning good features 

Local 

Features 

Image Space 

(high dim) 

Raw Feature Space 

(higher dim) 

Feature 

learning 

Selected Feature Space 

(low dim) 
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Magnitude & Phase 

Real Parts: 

Gabor Features 
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Intra-Personal Variation - Gabor 
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Extra-Personal Variation - Gabor 
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Ordinal Features 
(Liao, et al, ICB 2006) 

  Parameters:σ,d,θ 

  2-pole,3-pole,4-pole Filters 

124 Stan Z. Li, Chinese Academy of Sciences 



 

24 ordinal filters used in the experiments  
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Ordinal Encoding of Face 

filter 

 

 Threshold at 0  

 

binary image 
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Differences of Ordinal Maps 

Intra-Difference Extra-Difference 127 Stan Z. Li, Chinese Academy of Sciences 



Learning Good Local Features 
and  

Local Feature Based Classifiers 



Feature Selection 
By Statistical Learning 

 Goals: 

 Select good features from a large pool 

 Learn a sequence of weak classifiers using good 
features 

 Combine them into a strong classifier (the output 
result) 

 Advantages 

 Few parameters to adjust 

 Trained classifier works fast 

129 Stan Z. Li, Chinese Academy of Sciences 



As Result of AdaBoost Learning 

 Effective features are selected 

 A weak classifier is constructed for each 
feature  

 The weak classifiers are combined into a 
strong one 

 Fusion at both feature and decision levels 

130 Stan Z. Li, Chinese Academy of Sciences 



Successful Applications 

 2D Face Detection & Recognition 

 Viola & Jones, Haar + boosting for face detection & 
recognition 

 Li and students  

 Haar / Gabor / LBP / Oridinal + boosting, 2001-2005  

 3D and 3D+2D Fusion   

 Li and students, 2005 

 NIR Face Recognition 

 Li and students, 2004-2005 

131 Stan Z. Li, Chinese Academy of Sciences 



Learning Fusion of 3D+2D  

at Feature and Decision Levels 

 



  

 2D and 3D modals  
 are both useful  
 but contribute in different ways 

 2D+3D fusion 
 Performs better than 2D or 3D alone 
 currently done (mostly) at decision level  

 2D+3D fusion at feature level could be advantageous 
(Bowyer, Chang, Flynn 2004) 

 

 2D+3D fusion could be even better if fusion at both feature 
and decision levels (this paper) 

 We do this in the framework of “local feature + AdaBoost 
learning” 

Motivation 
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 PCA, LDA, ICA, EGBM, etc 

 Local Feature + Boosted Classifiers (2D) 

 3D range imaging (Besl and Jain, 1985) 

 2D+3D multi-model face biometrics (Bowyer, Chang, and  
Flynn, ICPR 2004) 

 2D+3D fusion performs better than using either 3D or 2D 
alone (Chang, Bowyer and Flynn, PAMI 2005) 

Background 

134 Stan Z. Li, Chinese Academy of Sciences 



3D Face Recognition 

Expression 

Pose 

Illumination Laser scanner 

Exact registration 

Select robust region 

2D face recognition 
problem 

3D face recognition 
resolution 

Using 3D information：shape, depth 
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Data 
Acquirement 

 
Preprocess 

ID 

Classification 

Feature 
Extraction 

Template 
 
1101… 

Templates 

Processing 3D Face Recognition 
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Preprocess for 3D 

Cubic  
interpolation 

Nearest 
filter 

Shift &  
Rotation  

 

Preprocess for 2D 
Mask Histogram  

equalization 
Alignment  

137 Stan Z. Li, Chinese Academy of Sciences 



Preprocessing Results  

  

138 Stan Z. Li, Chinese Academy of Sciences 



LBP Local Features 

 Extracted for every pixel location 

 in 3D and 2D images 

139 Stan Z. Li, Chinese Academy of Sciences 



LBP Histograms for  

Sub-Windows 

 An LBP Histogram  
 256 bins for un-restricted LBP code 

 59 bins for uniform LBP code 

 Subject to sub-window size 

 An LBP histogram computed for each location 
with a given window size 

 Distance btw 2 histogram – Eq.(2) 

 Naïve distance btw 2 LBP feature templates: 

 summing up for all locations and window sizes 

140 Stan Z. Li, Chinese Academy of Sciences 



3D+2D Fusion 

  

3D data 2D data 

 Generate a large number of Local Features 
 Boosting learning to select best features 
 Fusion at both feature and decision level 
 Better 3D results and 3D+2D results 

141 Stan Z. Li, Chinese Academy of Sciences 



Experiments 

 Compared Methods 

 CBF (Chang, Bowyer, Flynn 2005) fusion 

 2D, 3D Metrics distance in PCA spaces 

 Weight ＝ (dist2－dist1)/(dist3-dist1) 

 (dist1,2,3 are ranked distances for a probe) 

 Score fusion 

 Compute scores of boosted classifiers for 3D & 2D 

 Addition of the boosted scores (better than CBF addition) 

 Feature+Score fusion (proposed method) 

142 Stan Z. Li, Chinese Academy of Sciences 



Data Sets 

Minolta Vivid 910 

Alignment Results 

143 Stan Z. Li, Chinese Academy of Sciences 



Features Learned for 3D or 2D 

  

144 Stan Z. Li, Chinese Academy of Sciences 



3D or 2D Boosted Classifiers vs. PCA 
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Features Learned for 3D+2D 

  

146 Stan Z. Li, Chinese Academy of Sciences 



Comparison of 3 Fusion 
Methods 

147 Stan Z. Li, Chinese Academy of Sciences 



Conclusion 

 Novelties 

 First using LBP Feature on 3D face recognition 

 First Adaboost learning for 3D Features 

 First fusion of 2D+3D at both feature and 
decision levels, using Adaboost learning 

 Advantages demonstrated 

148 Stan Z. Li, Chinese Academy of Sciences 



Face Recognition 
Using Near Infrared Images 

 



Intrinsic vs. Extrinsic Factors 

 Extrinsic Variations 
 illumination 
 facial expression 
 head pose 
 facial hair, cosmetics 
 accessories (eyeglasses, etc) 
 image size and quality 

 Intrinsic Info 
 (1) Info specific to faces (for face/nonface 

classification) 
 (2) Info specific for identity classification (identity 

dimension, for face recognition) 
 Immune from extrinsic factors 

150 Stan Z. Li, Chinese Academy of Sciences 



Imaging Models 

 Face is a 3D 

 Physical Imaging Model 

 

 

 

 Imaging Factors 

 Shape  n(x,y) – intrinsic factor 

 Albedo r(x,y) – intrinsic factor 

 Illumination s= (s1, s2, s3) – extrinsic factor 

(Lambertian Model) 
= + + 

151 Stan Z. Li, Chinese Academy of Sciences 



Intrinsic Part of Face Image 

 Face Image Model (Lambertian) 

 

 

 

   FT =r nT   -- the intrinsic factor of face identity 
 

152 Stan Z. Li, Chinese Academy of Sciences 



Strategies for Better Accuracy 

 Remove Extrinsic Factors from Images 
 3 Modeling - Vision Techniques 

 Morphable Models – Image and Learning 

 Advanced Sensors – This work 

 Recognition Based on Intrinsic Factors 
only 
 Capturing both 3D information and 

reflectance of facial surfaces – This work 

153 Stan Z. Li, Chinese Academy of Sciences 



Near Infrared Face Recognition 

 Advantage 

 Illumination invariant face recognition Method 

 

 

 

 

 

 Highly accurate and fast 

 Can work in dark environment 
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AuthenMetric  
NIR Face Recogniton System 

 For Cooperative Applications 
 Access control, E-Passport, ATM, etc 

 Features 
 Novel NIR image capture device to minimizes 

influence of environmental lighting  

 Recognition Classifier learned using LBP features + 
AdaBoost 

 Performance 
 Stable in environmental lighting of 0-50,000 Lux 

 Accurate and fast system in “Scenario Tests”  

155 Stan Z. Li, Chinese Academy of Sciences 



NIR Imaging Hardware 

with s = (0,0,1) 

156 Stan Z. Li, Chinese Academy of Sciences 



Performance Comparison: 
LBP+Boosting vs PCA vc LDA 

157 Stan Z. Li, Chinese Academy of Sciences 



Scenario Tests 

Development NIR Face System in 2005 

158 Stan Z. Li, Chinese Academy of Sciences 
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NIR Face Products 

 Platform: PC based and Embedded 

 

 

 

 

 

 Working Mode: Online, offline, networked 

159 Stan Z. Li, Chinese Academy of Sciences 



NIR Face+Iris Multimodality 

 Face + Iris Unified 

 Multimodality  

 In a single shot 

 NIR imaging for both 

 Non-intrusive 

 Iris as part of face  

 Challenge 

 Effortless Imaging 

Stan Z. Li, Chinese Academy of Sciences 



Heterogeneous Face 

Recognition 
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Heterogeneous Face Biometrics (HFB) 

 Heterogeneous Types of Face Images: 

Visible vs.  NIR vs. 3D  vs. Thermal NIR 

 Face Matching across Heterogeneous Types 

Stan Z. Li, Chinese Academy of Sciences 
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HFBs in Broad Sense 

 VIS type of face images 

 CCD vs. CMOS sensors,  

 photo scan,  

 face sketch,  

 under different illumination conditions,  

 of different image resolutions,  

 of different image quality. 

Stan Z. Li, Chinese Academy of Sciences 
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Significance of HFB Research 

 As standalone face biometric technology 

 As an added module for multimodal face recognition  

 Addressing underlying issues in existing face 
biometrics  

 Research and development on HFBs investigate 
problems caused by heterogeneities in 
homogeneous face biometrics and may lead to 
better solutions 

 Provides new directions for face based biometrics, 
image analysis, pattern recognition and machine 
learning 

Stan Z. Li, Chinese Academy of Sciences 
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Research Issues 
 Understanding heterogeneous image formation models 

 Discovering relations between heterogeneous images 

 Formulating transformation of one type to another 

 Common feature extraction 

 Matching across heterogeneous images 

 CASIA Heterogeneous Face Biometrics (HFB) database 

 http://www.cbsr.ia.ac.cn/english/HFB%20Databases.asp 

Stan Z. Li, Chinese Academy of Sciences 
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Influence on NIST Projects 
 NIST（National Institute of Standards and Technology）

Multiple Biometric Grand Challenge （MBGC 2008） 

 Include NIR Face Video and VIS Color Face images 

 Input: NIR face image 

 Enrollment: VIS face image 

 NIR vs VIS 

 Partial Face Matching 

Stan Z. Li, Chinese Academy of Sciences 



Some More Applications 



 400,000 border-crossings every day 

 Two scenarios：Passengers & Vehicle Drivers 

 150 gates deployed by now  

 Two Modalities: Face & Fingerprint  

 1,600,000 people enrolled.  

 Verification Speed: 6 sec / crossing 

Biometric Border-Crossing: ShenZhen – HongKong 

168 Stan Z. Li, Chinese Academy of Sciences 



Beijing Olympic 2008 
 RFID tickets associated with identities 

 Verification of identity 

 Video capture vs photo scan 

169 Stan Z. Li, Chinese Academy of Sciences 



Face Recognition on Mobile 

Ubiquitous face recognition 

 

 

… 

… 
Face Matching Engine 

Obama 
Wireless 

170 Stan Z. Li, Chinese Academy of Sciences 



Mobile Recognition Results 

171 Stan Z. Li, Chinese Academy of Sciences 



Ubiquitous Face Recognition 
-- A unified platform 

172 Stan Z. Li, Chinese Academy of Sciences 



Face Surveillance and 
Identification 

 Fuse face recognition, object tracking and Id. 

 Comparison with watch-list 

Discovery Report Deployed 

173 Stan Z. Li, Chinese Academy of Sciences 
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More Challenges 
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 Printed Photo, Video Replay, 3D Model 

 

 

 

 

 

Spoofing Attacks 

Stan Z. Li, Chinese Academy of Sciences 



Reported Cases 

Case 1. A young man, 
disguised as an old, cheated 
Canadian Airline security, 
10-29-2010. 

Case 2. Google phone 
“Face Recognition Unlock” 
function can be easily 
spoofed by photos, 2011. 

176 Stan Z. Li, Chinese Academy of Sciences 



Face Anti-spoofing 

To classify a live face from fakes 

HCI-based methods: Challenge-Response 

Computer requires the subjects to exhibit specific 
facial motions, the detection of which determines 
the liveness. 

 

Multi-modality methods:  

Face, voice, gesture modalities, ... 
177 Stan Z. Li, Chinese Academy of Sciences 



Face spoofing can be more than one might think … 

Spoofing Attacks 

178 Stan Z. Li, Chinese Academy of Sciences 



 

 Imaging faces beyond visible spectrum  

 Analyze reflectance property 

 Train statistical model 

400nm      850nm      VIS   

Nonintrusive Solution: Multispectral Techs 

179 Stan Z. Li, Chinese Academy of Sciences 



Previous Results 

Attack Detection Accuracy 

Genuine vs Photo 92.2% 

Genuine vs Video Replay 100% 

Genuine vs Mask 89.2% 

180 Stan Z. Li, Chinese Academy of Sciences 



CASIA Face Anti-spoofing Database 

     A diverse and comprehensive database for 
evaluating anti-spoofing techniques 

Baseline evaluation under 
different scenarios – provided  

181 Stan Z. Li, Chinese Academy of Sciences 
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Unsolved Problems 

 

 

 

 

              Pose              Make up       Facial Wear 

 

 

 

 

                                      Aging 
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Center for Biometrics and Security Research 
Institute of Automation, Chinese Academy of Sciences 

www.cbsr.ia.ac.cn 
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Goal: To achieve excellence in R & D 

 Biometrics  

 Face 

 Iris 

 Fingerprint 

 Palmprint 

 Gait 

 Signature 

 Intelligent surveillance 

 Security surveillance 

 Traffic surveillance 

 Object detection, 
classification, tracking 

 Abnormal event 
detection 

184 Stan Z. Li, Chinese Academy of Sciences 



Commercial: The Face Handbook 
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