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Introduction 



Face Recognition Process 

1. Face Detection 

2. Face Tracking 

3. Face Alignment 

4. Face Recognition 

4 

@ Microsoft Techfest 2002 
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 Face Recognition System 
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Face Tracking (MSR) 

 Input:  
 Video containing 

moving faces 

 Output: 
 Locations, scales, 

 and poses of  

 tracked face  
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Face Alignment 

 Input:  

 Face detection/tracking 
output (location, scale, and 
pose) 

 Output: 

 Accurate localization of facial 
landmarks / outline 

 Purpose: 

 For geometric normalization 
towards accurate facial 
feature extraction  
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Face Matching 

 Feature Extraction 

 Matching 

 Decision (Identification, 
Verification) 

。。。。。。 

Face 

Database 

Face Input 
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Face as Compared to  
Other Biometrics 

 Universality  -- H 

 Acceptance  -- H 

 Easy to acquire-- H 

 Permanence  -- M 

 Reliability  -- M-H 

 Uniqueness  -- L 
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Face Recognition R&D 

 Applied Basic Research 

 Image processing 

 Vision – pose, lighting 

 Pattern recognition 

 Statistical learning 

 Subspaces & manifolds 

 Algorithm Research 

 Face detection 

 Face tracking 

 Face alignment 

 Feature extraction 

 Face Matching 

 System development 

 Application Development 
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History (60-70’s): 
Geometric Feature Based Approach 

 In traditional AI-CV  framework 

 Image features pre-specified 

 Features= 

 {type, locations, distances} 11 



History (90’s -):  
Learning-Based, Subspace Analysis Approach 

 Different from the AI-CV approach 

 Example-based 

 Features Learned 

 Dimension reduction 

 Linear mapping from high-dim to low-dim spaces  

 Linear Subspace Methods: Eigenface (PCA) 
and Others 

 Face Representation: Kirby & Sirovich. 1990. 

 Face Recognition: Turk & Pentland. 1991. 

 Nonlinear Methods 

 (More contemporary  work). 
- .... 
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Year 2002: EyeCU at MSR Techfest 
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Year 2005: AuthenMetrics of CBSR 

 E-Passport at China-Hong Kong Boarder 

 E-Passport at China-Macau Boarder 

 Access-control in “Beijing” 

 Others 

MRTD System 
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Challenges in  
Face Recognition 

 Image Changes due to Variations in 
 Geometry (Head pose, Facial expression) 

 Photometry (Illumination, Camera properties) 

 Other Variation Factors 
 Aging, Facial hair, Cosmetics, Accessories 

(eyeglasses, etc) 
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Outline 

1. Introduction to Face Recognition 

2. Linear Subspace Analysis 

3. Nonlinear Subspace Analysis 

4. Research in MSRA Face Group 

5. Face Recognition Evaluation 

6. Future Perspectives 
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Linear Subspace Analysis 



Subspace Modeling 
Dimension Reduction  
Feature Extraction 

 Eg: Images of size 64x64 

 Dimensionality of image space: 64x64=4096 (pixels) 

 Pixel values in {0,…,255} 

 256^4096 > 10^9864 possible configurations in 
4096-dim hypercube 

 Face pattern living in low dim subspace  
 Dimension reduction (features = projected 

coordinates) 
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Dimension Reduction  

Given {xi in RN | i=1,…,K}, find 
1. A space Rn  

2. Dimension Reduction Mapping 
  y=F(x): RN  Rn 

3. Reconstruction Mapping (Smooth, Non-Singular) 
  x=f(y): Rn  M (a manifold in RN) 

Such that 
1.  n<N as small as possible 
2.  M approximately contains {xi } 

  (reconstruction error is small)  

Note that f(F(x)) needs not be x (identity mapping) 
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Linear Subspace Analysis 

 Linear projection: n dim  m dim, m<n 
 h=Px      x: nx1, P: mxn, h: mx1 

 Reconstruction x=Bh,    B: nxm 

 Matrix Factorization 
   

  where X: nxN, B: nxm, H: mxN 

 Principal component analysis (PCA) 

 Vector Quantization (VQ) 

 Independent component analysis (ICA) 

 Non-Negative Matrix Factorization (NMF, LNMF) 

 Linear Discriminant Analysis (LDA) 
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PCA, VQ, NMF, and LNMF 

  

Method Constraints 

PCA b orthonormal vectors 

VQ h unary vectors 

ICA h independent 

NMF b,h non-negative vectors 

LNMF b,h non-negative + h sparse  

 b really part-based 
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PCA Representation  

 Basis vectors = Principal eigenfaces 

1st 2nd 3rd 4th 5th 6th 7th 

= 0.9569 X - 0.1945 X + 0.0461 X + 0.0573 X - .... 

Original Face 1st 2nd  3rd 4th 

 Face as linear combination of eigenfaces 

Y=[0.9569, - 0.1945 , 0.0461, 0.0573, …, ] 
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Independent Component Analysis 

H components as independent as possible 
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Learning View-Subspaces by Using 
PCA, ICA, ISA, TICA (Li et al 2001) 

  

  

PCA ICA ISA TICA 

view-specific n Y Y Y 
View-grouping n n Y Y 
View-ordering n n n Y 
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Non-negative Matrix Factorization 

 Papers: 

 Lee and Seung, Nature , 1999 

 Lee and Seung, NIPS, 2001.  

 Non-negative Matrix Factorization  

min D(X||BH),  s.t. B,H >=0 and            for all j 

        Basis Components learned by different methods 

NMF  VQ  PCA Training Example 25 



Problems with NMF 

1. Learned components not really localized, part-based 
2. Face recognition not very good 

NMF Results Learned From: 

    Lee-Seung’s Data               ORL Data              Our Data 
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Local Non-negative Matrix Factorization 

 Additional constraints imposed on NMF 

 for spatially localized, part-based representation 

 LNMF      NMF            PCA 

     Comparative results learned from ORL data: 

27 
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Additional Constraints  
                     .    Let  
 

1. Maximum Sparsity in H. A basis component       
should not be further decomposed into more 
components. Given          ,                            
should be minimized for all j: 
 
 

2. Maximum total activity. Retain most 
expressive components: 
 
 

3. Orthogonality of basis: 
  

28 
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Learning by  
Constrained Optimization 

 

 NMF 
min 

       s.t. B,H>=0,  

 LNMF = NMF + localization constraints 
min 

      s.t. B,H>=0,  
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LNMF Learning Algorithm 

 
1.   

 

 

2.   

 

 

3.    

 

 

Convergence proved. 
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Comparison of  
PCA, NMF and LNMF Bases 

   LNMF       NMF           PCA 31 
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LNMF vs NMF 

   LNMF                                      NMF  
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Nonlinear Subspace Analysis 



Face Detection and Recognition 
- From Manifold Viewpoint 

Detection 

nonface 

face 

Recognition 

face 

Faces 

Nonfaces 

Person 2 

Person 1 
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Beyond Linear Subspaces 

 Face subspaces are nonlinear manifolds 

 Manifolds of faces and nonfaces (detection) 

 Manifolds of different persons (recognition) 

 Nonlinear Separability of face manifolds 

 Faces/Nonfaces are separable in image space 

 Face 1 / Face 2 / … / Face N are also 

separable 

 Yet, highly nonlinear and interweaving 
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Dimensionality of Nonlinear Subspace 

 Linear Space: Spanning dimension (basis 
dimension) 

 Intrinsic dimension (latent dimension): the 
smallest number of parameters to model the 
data without loss. If it is d, then the observation 
(of dimension n>d) is generated by 

X=H(v1,…,vd) 

 Topological space (local dimension): the basis 
dimension of the local linear approximation of 
the hypersurface on which the data resides. 
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Nonlinear Subspace Illustration: 

  

Linear projection onto 

the x1-x2 subspace   

(2-D) as a circle. 

Nonlinear projection 

onto the t subspace (1-

D) as a straight line. 
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Intrinsic Dimension Estimation 

• Using Neighborhood Information (Jain, Dubes 

and Students. IEEE-PAMI. 1979). 

• Packing Number Methods (Kegl 2002) 
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Nonlinear Subspace Analysis 

 Recent Advances 
 ISOMAP (Science, 2000) 

 LLE (Science, 2000) 

 Laplacian EigenMap (NIPS, 2001) 

 Properties 
 Count for interaction within 

neighborhood  

 Non-orthogonal projections 

 Advantages 
 Lead more sensible modeling 

 Discover intrinsic dimensions 

 Disadvantages 
 Increased computation 

 Need to work out a mapping 
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ISOMAP 

  
 ISOMAP = Geodesic dist + MDS 

• Metric MDS is used to recover 
parametrizations in lower dimensional space 
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ISOMAP Results 
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Locally Linear Embedding (LLE) 

 In the high dim space find W 

 

 

     s.t. ∑iWij=1 

 In the low dim space find Y 

 

 

42 Stan Z. Li, Chinese Academy of Sciences 



LLE Result: 
Pose and Expression 

Dimensions  

43 Stan Z. Li, Chinese Academy of Sciences 



Face Grand Challenges  
- From Subspace Viewpoint 



Challenges in Face Recognition 

 Complexity of nonlinear face manifolds 

 Problem in Generalizing 
 Limited Training Data  

 When lighting changes 

 When pose changes 

 Daily changes and aging 

 When Camera property change 

 Euclidean Geometry Inappropriate in 
image space 
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Rotated Faces 
 in PCA Subspace 

46 Stan Z. Li, Chinese Academy of Sciences 



Scaled Faces 
 in PCA Subspace 
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Translated Faces  
in PCA Subspace 

Manifolds are Folding and Interweaving 
48 Stan Z. Li, Chinese Academy of Sciences 



PCA Subspace of “Re-Lighted” Faces 
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Subspaces in 
Detection and Recognition 

Detection 

nonface 

face 

Recognition 

face 

Faces 

Nonfaces 

Person 2 

Person 1 
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Subspaces in 
Face Recognition and Gender Classification 

Recognition 

face 

Person   1 

Person 2 

Gender 

Male 

Female 
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Non-Euclidean Geometry 

 Euclidean Geometry 

 Inappropriate 

 Need to model 

 manifolds in 

 Non-Euclidean 

 Space 

 Geodesic distance 

face 

Person 1 

Person 2 
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Separability in  
Image and Feature Spaces 

 Individual faces Separable in image space 
 Complex, but separable 

 Difficult to separate in feature space  
 Overlapping in feature space due to information loss 

 

face 

Person   1 

Person 2 

Dim 

Reduction 

Overlapping 

area 

Image Space Feature Space 53 Stan Z. Li, Chinese Academy of Sciences 



Face Detection 



Face Detection: Approach 

 Scan the image with subwindows of 
varying size and location 

 Classify a subwindow x into face/nonface 

 Need a “strong classifier” for accurate 

classification 

 Post-processing: Merge multiple detects  

Faces 

Nonfaces 
55 Stan Z. Li, Chinese Academy of Sciences 



State-of-the-Art Methods: 
Local Features + Boosting 

 Viola & Jones, 2001 

 Haar Features + AdaBoost + Cascade 

 Schneiderman & Kanade, 2000 

 Wavelet Histograms  

 Li, et al, 2002 

 Extended Haar Features + FloatBoost + Pyramid 

 Haizhou Ai, et al, 2003-2005 

 Omni-view face detection, Haar feature + Boosting + 
More advanced architecture 
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AdaBoost Method 
(Viola & Jones) 



Simple Haar features  
(Viola & Jones) 

     3 rectangular features types: 

• two-rectangle feature type    

 (horizontal/vertical) 

• three-rectangle feature type 

• four-rectangle feature type 

These rectangular features, as opposed to more 

expressive steerable filters, can be computed very 

efficiently using integral images. 

Using 24x24 windows  49,396 features.  
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Integral Images  
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AdaBoost Learning 

 Proposed by Freund et al 1997, 1998 

 Task: Given {(xi, yi)}, learns HM(x) so that yi= sign(HM(x)) 

 Learns and combines a sequence of weak classifiers hm(x) 
into a strong classifier 

 

 

 

 hm (x) are learned in stages to minimize error bound (see 
later) 

 

 Associate (xi , yi) with weight wi  and reweight after each 
iteration (see formula later) 





M

m

mm xhxHM

1

)()( 
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Weak Classifiers 

 One WC for a scalar Haar feature 

 WC outputs face/nonface by comparing 
the scalar value with a threshold 

 Best threshold obtained by examining the 
weighted histogram 
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Learning Weak Classifiers 
Based on Weighted Histogram 
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Best Features Learned 

 First features selected by AdaBoost are 
meaningful and have high discriminative power 

  By varying the threshold of the final classifier 
one can construct a two-feature classifier which 
has a detection rate of 1 and a false positive 
rate of 0.4.   
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Speed-up through Cascade 

 Simple, boosted classifiers can reject many of negative 
sub-windows while detecting all positive instances. 

 Series of such simple classifiers can achieve good 
detection performance while eliminating the need for 

further processing of negative sub-windows.    
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FloatBoost Method 
Li, et al 



AdaBoost: Advantages 

 Provably effective provided that hm  are “good 
enough” 

 Generally does not overfit 

 Does overfit when data contains outliers 

 a less complex classifier (combining fewer weak 
classifiers) is preferred 

 Simple and easy to program 

 Almost no parameters to tune (except M, #WC) 
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AdaBoost: Problems 

1. A sequential, local minimizer 

2. May overfit when too many weak classifiers 

are combined (recent studies) 

3. “Detachment” between cost function and 

error rate 

4. Need methods for learning weak classifiers 
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FloatBoost Project: Objectives 

 Better boosting learning: To address  (1-3) 
by incorporating Floating Search (Pudil, 
Novovicova & Kittler, 1994) 

 Weak classifier: For (4), to derive formula 
for efficient approximation of weak 
classifier 

 Fast multi-view face detection: System 
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FloatBoost =  

AdaBoost + FloatingSearch 

 Procedure 
1. Boosting to add one weak classifier 

2. If removing a weak classifier leads to a maximum 

improvement (eg in error rate), remove the weak 

learner and go to 2 

3. If termination condition not satisfied, go to 1 

 Results in a strong classifier of less 
complexity with improved performance 
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Learning Weak Classifiers 

 RealBoost learns a strong classifier of the form 

   HM(x) =h1(x) + h2(x) + …+ hM-1(x) + hM(x) 

 in stages to minimize the error bound: 

 

 

 Given the first M -1 weak classifiers, the best, ideal 
M-th is derived as 

     

70 Stan Z. Li, Chinese Academy of Sciences 



Extended Haar Features 

 Three types of fk  

 

 

 

 

 

 A total of K>400,000 such features 

 They are overcomplete for representing x 
71 Stan Z. Li, Chinese Academy of Sciences 



Weak Classifiers 

 

 Problem: estimation of p(x |y, w) or LM(x) is 
difficult for high dimensional data x 
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Approximating p(x | y, w)  

 Design weak classifiers in 1-space instead of 400-D 

space 

 Design a dictionary of candidate scalar features of x: 

   { fk(x) | k=1,…,K  } -- see later 

 

 Given                          selected by previous stages, 

approximate   
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Uni-Variate Weak Classifiers 
 

 Construct a dictionary of candidate weak classifiers  

 

 

 where 

 

 

 

 Find the feature k   so that           best fits hM(x) w.r.t. 

training data {xi}, and take 

74 Stan Z. Li, Chinese Academy of Sciences 



 

 

combine 

 Coarse to fine  

 view partition: 

 

Dealing with Out-of-Plane Rotation 
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Detector-Pyramid 

Level  1 2 3 Total 

Time (ms) 110 77 15 202 

Method V-based Det.Pyr 

Time (ms) 967 202 
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Dealing with In-Plane Rotation 

 Boosted face detector covers +- 15 deg 

 Rotating the image by +-30 deg 

 As result, +-45 deg can be covered 

Merged 

Output 77 Stan Z. Li, Chinese Academy of Sciences 



Multi-View Face Detection 

 Fast MV FD system 
reported (5 fps) 

 Gives pose estimate 
while detecting faces 

 Face detection and 
recognition demo 
tomorrow 
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Conclusions 

 FloatBoost learns a strong classifier of less 
complexity than AdaBoost (hence less 
overfitting)  

 Formula for uni-variate approximation of 
ideal weak classifiers 

 Fast multi-view face detection system 

 Future work:  
 Dealing with outliers in learning 

 Improving training efficiency by sub-sampling 
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Face Pose Estimation 
 



Facial Pose Estimation 

 Approximately 75 percent of the faces in 
home photos are non-frontal 

 Task: to estimate the angle of head 
rotation 

 

out-of-plane rotation 
81 Stan Z. Li, Chinese Academy of Sciences 



 Unsupervised learning (eg using ICA) 

 Pose clustering and pose classification learned 
using pose-unlabeled face data 

 Supervised learning 

 Pose clustering and pose classification learned 
using pose-labeled face data 

 

Approaches 

82 Stan Z. Li, Chinese Academy of Sciences 



Supervised Learning of Nonlinear Mapping 
for Pose Estimation 

x: 400-D y: 10-D q: 1-D 

Regardless of illumination 

           and identity 
SVR training objective: 
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Pose Estimation Using SVR Array  
(Li et al ICCV’01) 

View-Specific SVR’s: 

 

 Supervised Learning of Nonlinear View-
Subspaces 

 From View Labeled Training Data  

 Illumination-invariant 

SVR     is trained to output: 
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Illumination-Invariant,  
View-Specific Signature 

   a=90 degree         a=40 degree   a=0 degree 
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Results with 2000 Test Samples 
Each View   

86 Stan Z. Li, Chinese Academy of Sciences 



SVR Output for Nonfaces 
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Face Alignment 
 

ASM, AAM, DAM,TC-ASM 



AAM/DAM 
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Active Shape Models (ASM) 

 Developed by Cootes, Taylor, et al.  

 The solution space is constrained by PDM, 
namely the global shape space. 

 Local appearance models derived at the 
landmarks converge to the local image 
evidence. 
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Formulation of ASM 

 Global Shape Model: 

 Local Appearance Models: 

 

    

   Where     is the average profile around 
the i-th landmark, and      is the 
covariance matrix of the sample profiles 
for the i-th landmark. 
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Formulation of ASM 

 In each iteration,    is obtained from the 
refinement of the local appearance models, 
the solution shape s is derived by 
maximizing the likelihood probability: 

 

   where 

lmS

);(minarg)|(maxarg sSEngsSps lm
s

lm
s



22' ||||||||);(  lmlmlmlm ssSSsSEng 
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Active Appearance Models(AAM) 

 Cootes proposed and developed the Active 
Appearance Model (AAM) 

 Built based on PDM. 

 Shape and texture are combined for the 
appearance modeling. 

 Alignment is guided by minimizing the texture 
difference  between model and ground truth. 
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Formulation of AAM 

 Shape   Model: 

 Texture Model: 

 Appearance Model: 

 

 The search strategies are based on the 
linear regression assumptions: 

UsSS 

VtTT 











t

s
A WaA 

TAa a  TAp p 
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Direct Appearance Models 
  



Shape and Texture Subspaces in AAM  

 Shape is represented as s in PCA shape 
subspace: 

 

 Texture represented as t in PCA texture 
subspace 

 

 Appearance represented as a in appearance 
subspace 
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Problems with AAM 

 Shortcoming 1: In most case, dim (    )  <  
dim (   ). Therefore, some admissible textures 
are not modeled in appearance subspace 

 

 Shortcoming 2: a and T  are high dim vectors. 
So, very large memory is required in learning 
Aa in  

97 Stan Z. Li, Chinese Academy of Sciences 



DAM  Modeling 

 To rectify the shortcomings, depend s entirely 
on t, ie 

 

 Reasons 

 Intuitively, the same shape can enclose different 
textures, however, the reverse is not true. 

 The dimension of texture space is much higher than 
that of shape space. 

     

98 Stan Z. Li, Chinese Academy of Sciences 



 DAM Searching 

1. Given current p and shape s, get texture T; 

2. Use the principle components of      to 
predict the position displacement 

 

3. Use warped texture T  to predict next shape 

 

4. Goto 1;  

 DAM Learning:  
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  Advantages of DAM 

 DAM subspace includes the textures 
previously unseen by AAM. 

 The convergence and accuracy are 
improved. 

 The memory requirement is cut down to a 
large extent. 
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  Experiment Results 

  

 

Converge Rate 

 

DAM (Training) 

 

0.156572 

 

0.986815 

 

100% 

 

AAM (Training) 

 

0.712095 

 

2.095902 

 

70% 

 

DAM (Test) 

 

1.114020 

 

2.942606 

 

85% 

 
AAM (Test) 

 

2.508195 

 

4.253023 

 

62% 

 

* The convergence is judged by the satisfactions of 
two conditions:                  and                . 
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Texture-Constrained ASM 
  



Motivation 

 ASM:   
 Local information statistics enable good landmark localization  

(pro) 

 Solution often sub-optimal, depending on the initialization (con) 

 AAM:  
 Incorporate global texture evidence (pro) 

 Linear assumption about texture variation to appearance and 
position variation make it affected by illumination variation.  

 Texture constrained ASM: Inherit pros + Rectify cons + 
New optimization strategy 
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TC- ASM 

 Use the local appearance model of ASM 

for landmark localization - less sensitive to 

illumination variation. 

 Use global texture to constrain the shape - 

for more accurate estimation of shape 

parameters in optimization process. 
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TC-ASM 

 Texture-constrained shape model 
 For the edge or contour landmark, position 

uncertainty exists given the texture, whilst there are 
correlations between the shape and the texture for 
the face pattern. 

 The conditional distribution of the shape s given 
texture t is assumed Gaussian: 

 

 The shape    can be derived from the texture t directly, 
and is assumed linearly dependent on t: 

),()|( ttsNtsp 

tRst 

ts
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TC-ASM 

 Search based on Bayesian framework 

      is obtained from local appearance models as in 

ASM; 

 The texture    is extracted from the shape     and  
shape    is derived from                .  

 The posterior(MAP) estimation of the solution shape s 
given     and    : 

lmS

lmSt

ts tRst 

tslmS
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)()|(),|(
maxarg
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TC-ASM 

 Assuming     is  independent to    , given  s  , 
we obtain: 

lmS
ts
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Comparing AAM & TC-ASM 
under Illumination Change 

108 Stan Z. Li, Chinese Academy of Sciences 



Evaluation of  
ASM Alignment Results 



Learning Evaluation Function 

 Using AdaBoost classifier output as quantitative 
measure of alignment quality 

Good 

alignment 

Bad 

alignment 
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Evaluation Results  

 AdaBoost Output vs. Reconstruction Error 

-- Learning 

-- Reconstr 

 

 

 

 

-- Learning 

-- Reconstr 
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Face Recognition 
 

Local Features + AdaBoost Learning 



Framework 

 Local Features  
 Eg: Haar, Gabor, LBP, Ordinal, etc 
 Having good properties 
 Form a High-Dim Space 

 Intra vs Extra Representation for Multi-class Problem  
 Statistical Learning 

 2-Class Classification 
 Training on pos and neg samples 
 Nonlinear classifier: Eg AdaBoos, SVM 
 Learning for 

 Dim reduction (feature selction) 
 Classifier construction 

113 Stan Z. Li, Chinese Academy of Sciences 



Intra vs Extra Representation:  
N Class  Two Class 

(Baback Moghaddam) 

 N persons 

 

 

 Compare 2 templates 

John 

Peter 

Tom 

… … 

Dist(T1, T2) 

Yes:  

T1,T2 Same person 

T2 

< threshold? 

No:  

T1,T2 Diff person 

T1 

114 Stan Z. Li, Chinese Academy of Sciences 



Intra- and Extra- personal 
Variations in Image Space 

 (Baback Moghaddam) 
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Representative Works 

 Viola & Jones, papers 2001,2002 

 M. Jones, MERL TechReport 2003 

 Li & Students, papers 2001-2005 
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Local Features 



Good Features 

 Reduce extrinsic factors while keeping 
intrinsic factors unchanged 

 Simpler in shape than in image space  

 Individual faces are still separable 

 By a metric matching of templates 

 Separable by a nonlinear boundary 

118 Stan Z. Li, Chinese Academy of Sciences 



Local Features 

 Haar 

 Gabor wavelets 

 Local binary patterns (LBP) 

 Ordinal Features, etc 

 

Dim expansion: More local features than pixels. 
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Working in Good Feature Space 

 Map input image to a higher dim local feature space 

 Reduce dim by learning good features 

Local 

Features 

Image Space 

(high dim) 

Raw Feature Space 

(higher dim) 

Feature 

learning 

Selected Feature Space 

(low dim) 
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Magnitude & Phase 

Real Parts: 

Gabor Features 

121 Stan Z. Li, Chinese Academy of Sciences 



Intra-Personal Variation - Gabor 
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Extra-Personal Variation - Gabor 
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Ordinal Features 
(Liao, et al, ICB 2006) 

  Parameters:σ,d,θ 

  2-pole,3-pole,4-pole Filters 
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24 ordinal filters used in the experiments  

125 Stan Z. Li, Chinese Academy of Sciences 



Ordinal Encoding of Face 

filter 

 

 Threshold at 0  

 

binary image 
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Differences of Ordinal Maps 

Intra-Difference Extra-Difference 127 Stan Z. Li, Chinese Academy of Sciences 



Learning Good Local Features 
and  

Local Feature Based Classifiers 



Feature Selection 
By Statistical Learning 

 Goals: 

 Select good features from a large pool 

 Learn a sequence of weak classifiers using good 
features 

 Combine them into a strong classifier (the output 
result) 

 Advantages 

 Few parameters to adjust 

 Trained classifier works fast 

129 Stan Z. Li, Chinese Academy of Sciences 



As Result of AdaBoost Learning 

 Effective features are selected 

 A weak classifier is constructed for each 
feature  

 The weak classifiers are combined into a 
strong one 

 Fusion at both feature and decision levels 

130 Stan Z. Li, Chinese Academy of Sciences 



Successful Applications 

 2D Face Detection & Recognition 

 Viola & Jones, Haar + boosting for face detection & 
recognition 

 Li and students  

 Haar / Gabor / LBP / Oridinal + boosting, 2001-2005  

 3D and 3D+2D Fusion   

 Li and students, 2005 

 NIR Face Recognition 

 Li and students, 2004-2005 

131 Stan Z. Li, Chinese Academy of Sciences 



Learning Fusion of 3D+2D  

at Feature and Decision Levels 

 



  

 2D and 3D modals  
 are both useful  
 but contribute in different ways 

 2D+3D fusion 
 Performs better than 2D or 3D alone 
 currently done (mostly) at decision level  

 2D+3D fusion at feature level could be advantageous 
(Bowyer, Chang, Flynn 2004) 

 

 2D+3D fusion could be even better if fusion at both feature 
and decision levels (this paper) 

 We do this in the framework of “local feature + AdaBoost 
learning” 

Motivation 

133 Stan Z. Li, Chinese Academy of Sciences 



  

 PCA, LDA, ICA, EGBM, etc 

 Local Feature + Boosted Classifiers (2D) 

 3D range imaging (Besl and Jain, 1985) 

 2D+3D multi-model face biometrics (Bowyer, Chang, and  
Flynn, ICPR 2004) 

 2D+3D fusion performs better than using either 3D or 2D 
alone (Chang, Bowyer and Flynn, PAMI 2005) 

Background 

134 Stan Z. Li, Chinese Academy of Sciences 



3D Face Recognition 

Expression 

Pose 

Illumination Laser scanner 

Exact registration 

Select robust region 

2D face recognition 
problem 

3D face recognition 
resolution 

Using 3D information：shape, depth 

135 Stan Z. Li, Chinese Academy of Sciences 



Data 
Acquirement 

 
Preprocess 

ID 

Classification 

Feature 
Extraction 

Template 
 
1101… 

Templates 

Processing 3D Face Recognition 

136 Stan Z. Li, Chinese Academy of Sciences 



Preprocess for 3D 

Cubic  
interpolation 

Nearest 
filter 

Shift &  
Rotation  

 

Preprocess for 2D 
Mask Histogram  

equalization 
Alignment  

137 Stan Z. Li, Chinese Academy of Sciences 



Preprocessing Results  

  

138 Stan Z. Li, Chinese Academy of Sciences 



LBP Local Features 

 Extracted for every pixel location 

 in 3D and 2D images 

139 Stan Z. Li, Chinese Academy of Sciences 



LBP Histograms for  

Sub-Windows 

 An LBP Histogram  
 256 bins for un-restricted LBP code 

 59 bins for uniform LBP code 

 Subject to sub-window size 

 An LBP histogram computed for each location 
with a given window size 

 Distance btw 2 histogram – Eq.(2) 

 Naïve distance btw 2 LBP feature templates: 

 summing up for all locations and window sizes 

140 Stan Z. Li, Chinese Academy of Sciences 



3D+2D Fusion 

  

3D data 2D data 

 Generate a large number of Local Features 
 Boosting learning to select best features 
 Fusion at both feature and decision level 
 Better 3D results and 3D+2D results 

141 Stan Z. Li, Chinese Academy of Sciences 



Experiments 

 Compared Methods 

 CBF (Chang, Bowyer, Flynn 2005) fusion 

 2D, 3D Metrics distance in PCA spaces 

 Weight ＝ (dist2－dist1)/(dist3-dist1) 

 (dist1,2,3 are ranked distances for a probe) 

 Score fusion 

 Compute scores of boosted classifiers for 3D & 2D 

 Addition of the boosted scores (better than CBF addition) 

 Feature+Score fusion (proposed method) 

142 Stan Z. Li, Chinese Academy of Sciences 



Data Sets 

Minolta Vivid 910 

Alignment Results 

143 Stan Z. Li, Chinese Academy of Sciences 



Features Learned for 3D or 2D 

  

144 Stan Z. Li, Chinese Academy of Sciences 



3D or 2D Boosted Classifiers vs. PCA 

145 Stan Z. Li, Chinese Academy of Sciences 



Features Learned for 3D+2D 

  

146 Stan Z. Li, Chinese Academy of Sciences 



Comparison of 3 Fusion 
Methods 

147 Stan Z. Li, Chinese Academy of Sciences 



Conclusion 

 Novelties 

 First using LBP Feature on 3D face recognition 

 First Adaboost learning for 3D Features 

 First fusion of 2D+3D at both feature and 
decision levels, using Adaboost learning 

 Advantages demonstrated 

148 Stan Z. Li, Chinese Academy of Sciences 



Face Recognition 
Using Near Infrared Images 

 



Intrinsic vs. Extrinsic Factors 

 Extrinsic Variations 
 illumination 
 facial expression 
 head pose 
 facial hair, cosmetics 
 accessories (eyeglasses, etc) 
 image size and quality 

 Intrinsic Info 
 (1) Info specific to faces (for face/nonface 

classification) 
 (2) Info specific for identity classification (identity 

dimension, for face recognition) 
 Immune from extrinsic factors 

150 Stan Z. Li, Chinese Academy of Sciences 



Imaging Models 

 Face is a 3D 

 Physical Imaging Model 

 

 

 

 Imaging Factors 

 Shape  n(x,y) – intrinsic factor 

 Albedo r(x,y) – intrinsic factor 

 Illumination s= (s1, s2, s3) – extrinsic factor 

(Lambertian Model) 
= + + 

151 Stan Z. Li, Chinese Academy of Sciences 



Intrinsic Part of Face Image 

 Face Image Model (Lambertian) 

 

 

 

   FT =r nT   -- the intrinsic factor of face identity 
 

152 Stan Z. Li, Chinese Academy of Sciences 



Strategies for Better Accuracy 

 Remove Extrinsic Factors from Images 
 3 Modeling - Vision Techniques 

 Morphable Models – Image and Learning 

 Advanced Sensors – This work 

 Recognition Based on Intrinsic Factors 
only 
 Capturing both 3D information and 

reflectance of facial surfaces – This work 

153 Stan Z. Li, Chinese Academy of Sciences 



Near Infrared Face Recognition 

 Advantage 

 Illumination invariant face recognition Method 

 

 

 

 

 

 Highly accurate and fast 

 Can work in dark environment 

 

 
154 Stan Z. Li, Chinese Academy of Sciences 



AuthenMetric  
NIR Face Recogniton System 

 For Cooperative Applications 
 Access control, E-Passport, ATM, etc 

 Features 
 Novel NIR image capture device to minimizes 

influence of environmental lighting  

 Recognition Classifier learned using LBP features + 
AdaBoost 

 Performance 
 Stable in environmental lighting of 0-50,000 Lux 

 Accurate and fast system in “Scenario Tests”  

155 Stan Z. Li, Chinese Academy of Sciences 



NIR Imaging Hardware 

with s = (0,0,1) 

156 Stan Z. Li, Chinese Academy of Sciences 



Performance Comparison: 
LBP+Boosting vs PCA vc LDA 

157 Stan Z. Li, Chinese Academy of Sciences 



Scenario Tests 

Development NIR Face System in 2005 

158 Stan Z. Li, Chinese Academy of Sciences 
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NIR Face Products 

 Platform: PC based and Embedded 

 

 

 

 

 

 Working Mode: Online, offline, networked 

159 Stan Z. Li, Chinese Academy of Sciences 



NIR Face+Iris Multimodality 

 Face + Iris Unified 

 Multimodality  

 In a single shot 

 NIR imaging for both 

 Non-intrusive 

 Iris as part of face  

 Challenge 

 Effortless Imaging 

Stan Z. Li, Chinese Academy of Sciences 



Heterogeneous Face 

Recognition 
 



162 

Heterogeneous Face Biometrics (HFB) 

 Heterogeneous Types of Face Images: 

Visible vs.  NIR vs. 3D  vs. Thermal NIR 

 Face Matching across Heterogeneous Types 

Stan Z. Li, Chinese Academy of Sciences 
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HFBs in Broad Sense 

 VIS type of face images 

 CCD vs. CMOS sensors,  

 photo scan,  

 face sketch,  

 under different illumination conditions,  

 of different image resolutions,  

 of different image quality. 

Stan Z. Li, Chinese Academy of Sciences 
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Significance of HFB Research 

 As standalone face biometric technology 

 As an added module for multimodal face recognition  

 Addressing underlying issues in existing face 
biometrics  

 Research and development on HFBs investigate 
problems caused by heterogeneities in 
homogeneous face biometrics and may lead to 
better solutions 

 Provides new directions for face based biometrics, 
image analysis, pattern recognition and machine 
learning 

Stan Z. Li, Chinese Academy of Sciences 
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Research Issues 
 Understanding heterogeneous image formation models 

 Discovering relations between heterogeneous images 

 Formulating transformation of one type to another 

 Common feature extraction 

 Matching across heterogeneous images 

 CASIA Heterogeneous Face Biometrics (HFB) database 

 http://www.cbsr.ia.ac.cn/english/HFB%20Databases.asp 

Stan Z. Li, Chinese Academy of Sciences 
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Influence on NIST Projects 
 NIST（National Institute of Standards and Technology）

Multiple Biometric Grand Challenge （MBGC 2008） 

 Include NIR Face Video and VIS Color Face images 

 Input: NIR face image 

 Enrollment: VIS face image 

 NIR vs VIS 

 Partial Face Matching 

Stan Z. Li, Chinese Academy of Sciences 



Some More Applications 



 400,000 border-crossings every day 

 Two scenarios：Passengers & Vehicle Drivers 

 150 gates deployed by now  

 Two Modalities: Face & Fingerprint  

 1,600,000 people enrolled.  

 Verification Speed: 6 sec / crossing 

Biometric Border-Crossing: ShenZhen – HongKong 

168 Stan Z. Li, Chinese Academy of Sciences 



Beijing Olympic 2008 
 RFID tickets associated with identities 

 Verification of identity 

 Video capture vs photo scan 

169 Stan Z. Li, Chinese Academy of Sciences 



Face Recognition on Mobile 

Ubiquitous face recognition 

 

 

… 

… 
Face Matching Engine 

Obama 
Wireless 

170 Stan Z. Li, Chinese Academy of Sciences 



Mobile Recognition Results 

171 Stan Z. Li, Chinese Academy of Sciences 



Ubiquitous Face Recognition 
-- A unified platform 

172 Stan Z. Li, Chinese Academy of Sciences 



Face Surveillance and 
Identification 

 Fuse face recognition, object tracking and Id. 

 Comparison with watch-list 

Discovery Report Deployed 

173 Stan Z. Li, Chinese Academy of Sciences 
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More Challenges 
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 Printed Photo, Video Replay, 3D Model 

 

 

 

 

 

Spoofing Attacks 

Stan Z. Li, Chinese Academy of Sciences 



Reported Cases 

Case 1. A young man, 
disguised as an old, cheated 
Canadian Airline security, 
10-29-2010. 

Case 2. Google phone 
“Face Recognition Unlock” 
function can be easily 
spoofed by photos, 2011. 

176 Stan Z. Li, Chinese Academy of Sciences 



Face Anti-spoofing 

To classify a live face from fakes 

HCI-based methods: Challenge-Response 

Computer requires the subjects to exhibit specific 
facial motions, the detection of which determines 
the liveness. 

 

Multi-modality methods:  

Face, voice, gesture modalities, ... 
177 Stan Z. Li, Chinese Academy of Sciences 



Face spoofing can be more than one might think … 

Spoofing Attacks 

178 Stan Z. Li, Chinese Academy of Sciences 



 

 Imaging faces beyond visible spectrum  

 Analyze reflectance property 

 Train statistical model 

400nm      850nm      VIS   

Nonintrusive Solution: Multispectral Techs 

179 Stan Z. Li, Chinese Academy of Sciences 



Previous Results 

Attack Detection Accuracy 

Genuine vs Photo 92.2% 

Genuine vs Video Replay 100% 

Genuine vs Mask 89.2% 

180 Stan Z. Li, Chinese Academy of Sciences 



CASIA Face Anti-spoofing Database 

     A diverse and comprehensive database for 
evaluating anti-spoofing techniques 

Baseline evaluation under 
different scenarios – provided  

181 Stan Z. Li, Chinese Academy of Sciences 
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Unsolved Problems 

 

 

 

 

              Pose              Make up       Facial Wear 

 

 

 

 

                                      Aging 
Stan Z. Li, Chinese Academy of Sciences 



Center for Biometrics and Security Research 
Institute of Automation, Chinese Academy of Sciences 

www.cbsr.ia.ac.cn 
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Goal: To achieve excellence in R & D 

 Biometrics  

 Face 

 Iris 

 Fingerprint 

 Palmprint 

 Gait 

 Signature 

 Intelligent surveillance 

 Security surveillance 

 Traffic surveillance 

 Object detection, 
classification, tracking 

 Abnormal event 
detection 

184 Stan Z. Li, Chinese Academy of Sciences 



Commercial: The Face Handbook 

185 Stan Z. Li, Chinese Academy of Sciences 



 

 
 

 

Thank you 


