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Automatic ldentification of Persons

e [raditional Methods:

— special possessions (cards, documents, keys, ...)

— secret knowledge (passwords, PIN numbers, ...)
e Biometric | “Biological Measurement”| Methods

— some unique, complex feature of a person’s
accessible anatomy, physiology, or behaviour

— E.g. fingerprint, voice, face, iris, retina, DNA...

Randomness and complexity are the keys to uniqueness
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Some examples of biometric methods and applications

Home Office

Border &
Immigration Agency

B, - o4 0N
“IrisKids” (US) missing children
registration and identification
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Statistical Decision Theory
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Biometric decision power depends on the magnitudes of
within-person variability and between-person variability
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Properties of the Iris as an Identifier

 Highly protected, internal organ of the eye

- Externally visible, from distance up to some meters

|

 Random pattern of great complexity & uniqueness
- (keys to unigueness are randomness + complexity)

 Pattern is epigenetic (not genetically determined)

* Presumed stable, apart from pigmentation changes

- (no evidence of any visible pattern changes, although there is
some evidence that computed IrisCode templates may “age”)
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Developmental Morphogenesis and Chromatic Properties
 The human iris begins to form during the third month of gestation.

» The structures creating its distinctive pattern are complete by the eighth
month of gestation, but pigmentation continues into the first years.

« The layers of the iris have both ectodermal and mesoderma\ =
embryological origin, consisting of (from back to front): e
» a darkly pigmented epithelium;
> pupillary dilator and sphincter muscles; N
» vascularized stroma (connective tissue of interlacing Ilgaments) N
» an anterior layer of chromataphores and melanocytes with a
genetically determined density of melanin pigment granules.

* Iris colour is determined mainly by the density of the stroma and its
melanin content, with blue irises resulting from an absence of pigment:
longer wavelengths differentially penetrate while shorter wavelengths are
scattered, a phenomenon resembling that which makes the sky blue.
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In the visible band of light, the iris reveals a very rich,
random, interwoven texture (the “trabecular meshwork” )




But even “dark brown” eyes show rich texture
when images are captured in infrared illumination
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All pigmentation variations are due to melanin density. This can
sometimes change (e.g. growth of freckles, or pigment blotches);,
but these are invisible in the NIR (near infrared: 700nm — 900nm)
band of light used in all publicly deployed iris cameras, because
melanin is almost completely non-absorbing beyond 700nm.
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Example of an iris imaged in the visible band of
illumination (400nm — 700nm), showing freckles
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The same iris, Imaged (almost simultaneously) in the
(700nm — 900nm) NIR band: freckles become invisible
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In the visible band of light in unconstrained environments
(e.g. outdoors), ambient corneal reflections are common.
An iris acquired in the visible band often looks like this:
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Example of how an iris with low albedo (i.e. dark brown) looks in the
visible band: the corneal specular reflections completely dominate
the Lambertian iris image. (From The Economist, 14 January 2012.)
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All surfaces lie somewhere between
specular (mirror-like) and Lambertian
(scattering light equally in all directions).

The cornea is a specular surface; the
iris is Lambertian. This fact can be
exploited to separate out the ambient
environmental corneal reflections, which
are broadband but weak, from the more
narrow-band light in a nominated band
projected by the camera onto the eye to
obtain a Lambertian image of the iris.

By allowing back into the camera only
that same nominated narrow band of
light that the iris camera emitted, a band
in which there is much more spectral
power than in the broadband ambient
corneal reflections, these two sources
can be separated.
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from all of the environment
(all ambient wavelengths).
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The result is an image acquired in narrowband near-infrared light,
from which almost all ambient environmental corneal reflections
(except for that of the illuminator) have been “scrubbed.”
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Entropy: the key to biometric collision avoidance

« The discriminating power of a biometric depends on its entropy
e Entropy measures the amount of random variation in a population:

» the number of different states or patterns that are possible;

» the probability distribution across those possible states
 Entropy H (in bits) corresponds to 2" discriminable states or patterns

e Surviving large database searches requires large biometric entropy

» Epigenetic features (not genetically determined) make best biometrics

About 1 percent of persons have a .
monozygotic (“identical”) twin '
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Epigenetic biometric features are
vital if de-duplication of a large
national database is required, as
in the UID programme in India.

The epigenetic biometric property
Is especially important in cultures
with high rates of group inbreeding
(e.g. cousin marriage), so that
genetically related persons do not
collide in their biometrics.
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Iris Patterns are Epigenetic

Every biometric lies somewhere on a continuum between
being genetically determined (genotypic) or not (epigenetic)

Examples of genotypic traits: DNA, blood type, gender, race

Examples of epigenetic traits: fingerprints (except for type
correlations); and iris patterns (except for eye colour)

Example at middle of continuum: facial appearance.
(Identical twins look identical, but they both change over time
like everyone, yet they track each other as they age.)
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Genetically identical eyes
have iris patterns that are
uncorrelated in detail:

Monozygotic Twins A
(6 year-old boys)

Genetically ldentical Eyes Have Uncorrelated lrisCodes
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Genetically identical eyes
have iris patterns that are
uncorrelated in detail:

Monozygotic Twins B
(18 year-old women)

Genetically Identical Eyes Have Uncorrelated IisCodes
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Genetically identical eyes
have iris patterns that are
uncorrelated in detail:

Monozygotic Twins C
(78 year-old men)

Genetically ldentical Eyes Have Uncorrelated lrisCodes
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Localizing the iris boundaries by integro-differential operators
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Iris boundaries are often non-round. The coordinate system must...
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...create a deformed, non-concentric, doubly-dimensionless iris mapping
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...invariant to distance, magnification, pupillary dilation, and gaze angle.
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|ldealised mapping for a perfectly annular iris:
concentric circular boundaries

Iris with concentric circular boundaries

"Unwrapped iris:" polar sampling grid
whose columns correspond to the radial

samples at each angle around the iris

This unwrapping is often called the

“Daugman rubber-sheet model,” but
it is just a coordinate transformation
into normalised, and dimensionless,
coordinates. The implied change in

NIVERSITY OF topology by cutting 6 at 0 =2xis
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How reality differs from the idealised annular model

Actual non—circular iris boundaries (blue) Actual non—circular iris boundaries (blue)

- -
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Enforcing circular boundary models for an iris can generate
rivalrous solutions, with an effect similar to mislocalising a
centre-of-coordinates

Resulting assignment of the polar grid
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Active Contours and non-Circular Iris Coordinates

e Iris boundaries are rarely true circles. Performance is much enhanced by
encoding the boundary shapes accurately when mapping iris patterns.

e So: compute a Fourier expansion of N angular samples of radial gradient
edge data {ry} for 6 = 0 to N — 1 spanning [0,27]. A set of A discrete

Fourier coefficients {C},} are derived from the data sequence {ry} as follows:

N-1 .
) = Tge—kaH/l\
=0

e Note that the zeroth-order coefficient or “DC term” () extracts the average

curvature of the boundary: its radius if modelled simply as a circle.

e From these M discrete Fourier coefficients, an approximation to the inner or
outer iris boundary (now spanning occlusion interruptions, and at a resolution
determined by M) is obtained by the Fourier series { Ry}

1 M1

Ry = — C 2mikl /N
’ Nkz_:(] ke

¢ The trade-off between fidelity to the true boundary, and the stiffness of the
Active Contour, is set by M, the number of Fourier components used.
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Often the iris (especially in Oriental persons) is covered by eyelashes...
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Occluding eyelashes are detected and masked out
(prevented from influencing the IrisCode) by statistical
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hypothesis testing on the distribution of iris pixels,
seeking evidence of a sub-population passing a test.
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Setting Bits in an IrisCode by Wavelet Demodulation

Im

[0, 1] [1,1]

[0, 0] [1,0]
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2D Gabor wavelets as phase-steerable detectors

Z(x/2)=M,

Z@37/4)

Z(g) ZO)=M,

3 _
&\

D. Gabor (1900-1979)

Z(Ix/4)

o ol Condition ;"M’;“: =||*M1": (Adams Kong)
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Why phase is a good variable for biometric encoding

* Phase encodes structural information, independent of contrast
 Phase encoding thereby achieves some valuable invariances
 Phase information has much higher entropy than amplitude

* In harmonic (Fourier) terms, phase “does all the work”

 Phase can be very coarsely quantised into a binary string

 Phase is equivalent to a clustering algorithm (c.f. Adams Kong)

« Question: what is the best quantisation of phase (2, 4, 8... sectors)?
 Phase can be encoded in a scale-specific, or a scale-invariant, way

Gabor wavelets encode phase naturally, but in a scale- (or frequency)-specific way

Alternatives exist that encode phase in a total way (independent of scale/frequency),
such as the Analytic function (the signal minus its Hilbert Transform i f(X) cousin):
f(x) — 1 f(X), which is a complex function whose 2 parts are “in quadrature”
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Why IrisCode matching is so fast, parallelisable, and scalable

Bit streams A and B are data words of two IrisCodes.
Bit streams C and D are their respective mask words.

(data) A [ 1]OJOJ1JO]1][1]OJOJOJ1]O[I[I[1]O
(data) B O[T |O[1|1]T]O[O[T[O]O|T][O[T[1]0O

ADB I[1]0][0[T|O0[1T]O[T][O[I[1][1]0][0]0
(mask) C 1] 1]L1]O]LJO[1]1]O]O[LI[L1]1]O]1]1
(mask) D ||O| 11| 1|1 ]LT|O0|1]O]T][T[T|O[1]|1]1

CND O[1[1]o]T][o[O0[1T[O0]O[T[T[O0[O[1]1
(ACB)YNCND JO[1]0][0][1]0JOJO]O]O]TI[1]OJO]O]O

Note that for these 16 bit chunks, only 8 data bits were mutually unmasked by CND.

Of those 8, they agreed in 4 and disagreed in 4, so raw Hamming distance is 4/8 = 0.5
which is typical for comparisons between “Impostors” (unrelated IrisCodes).

Bit-parallel logic programming allows all of this to be done in a single line of C-code,
operating on word lengths up to the word-length of the CPU (e.g. 64 bits at once):

result = (A -~ B) & C & D;

Each of the 3 logical parallel operators executes in a single “clock tick” (e.g. at 3 GHz).
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Different use scenarios have different speed requirements

Real-time image processing speed is needed for “iris-on-the-move”
applications (e.g. must process 30 frames per second if the Subject
Is walking at 1 meter/second, with camera depth-of-field ~6 cm).

Matching speed may need to survey the entire enrolled database
(10% — 10° ?) per second, but matching is intrinsically parallelisable
across platforms, is intrinsically very fast anyway because it is based
on bit-parallel logic, and finally it is greatly expedited by Indexing.

De-duplication is highly compute-intensive, because the number
of pairings to be considered grows as N? for a population of size N.
E.g. Indian UID: N =10°, so N2 =101 . But de-duplication is
generally an off-line process, performed as the enrolled database
IS built, and again it is expedited by parallelisation and Indexing.
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Speed benchmarks for the publically deployed algorithms

All image processing operations, including segmentation and
template extraction, are performed within 30 milliseconds.

The bit-parallel matching algorithm allows as many bits as the
word-length of the computer (e.g. 64 bits) to be compared in a
single operation (1 machine instruction) between two IrisCodes.

Exploitation of ergodicity in (non-identical) lIrisCode comparisons
by subsampling and “early exit”, further accelerates matching.

Routine matching speeds are a million IrisCodes per second, per
ordinary (single-core) CPU. Indexing accelerates this by 1 or 2
orders-of-magnitude, e.g. 50 nanoseconds including all rotations.
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Entropy gives resistance against False Matches

The probability of two different people colliding by chance in so many bits
(e.g. disagreeing in only one-third of their IrisCode bits) is infinitesimal.
Thus the False Match Rate is easily made minuscule.
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But it’s like looking for
one of these... ...in one of these.
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Example of the importance of high entropy

« UIDAI (Unique Identification Authority of India) in 2011
began enrolling iris images of all 1.2 billion citizens

e As of February 2012, 150 million had been enrolled
o Currently enrolling 1 million persons per day

 Each enrolled person is compared against all of those
enrolled so far, to detect duplicates (“de-duplication™).
This requires (1 million x 150 million) = 150 trillion
Iris cross-comparisons daily: 1.5 x 10* per day

The avoidance of biometric collisions among comparisons
on this scale requires high biometric entropy, as possessed
by IrisCode phase bits, ensuring very rapidly attenuating tails
of the distribution obtained when comparing different eyes.




1014 iris comparisons per day! A typical galaxy contains
“just” 100 billion stars (101Y)... So UIDAI daily workflow
equates to the number of stars in 1,000 galaxies
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lIrisCode Bit Probabilities

Bits in IrisCodes are equally like to be ‘1’ or ‘0’

- This makes them maximum-entropy bitwise.

- If different irises had some common structure,
then this distribution would not be uniform.

When bits from IrisCodes derived from different eyes
are compared, those comparisons are Bernoulli trials.

| |
20 40 60 80 100 120
IrisCode Bit Position
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200 Billion Iris Cross-Comparisons, 0 Rotations, UAE Database
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IrisCode Bit Comparisons are Bernoulli Trials

Jacob Bernoulli (1645-1705) an-
alyzed coin-tossing and derived
the binomial distribution. If the
probability of “heads” is p, then
the likelihood that a fraction
r = m/N out of N tosses will
turn up “heads’ is:

= 20 tations, UAE Database
N
P m (1 (N—m) |
aj — - § [} 200.027.608,750 pair comparisons
' < N ) ' p p E l among 632,500 different irises

aaaaaaaaaaaaaaa
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Badly defocused iris images do not cause False Matches, because the
IrisCode phase bits then just become random, determined by pixel noise.
This i1s an advantage of phase over correlation-based coding methods.
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IrisCode Logic and Normalizations

Logic for computing raw Hamming Distance scores, incorporating masks:

(code A ® code B) NmaskANmaskB||

I
HD o =
lmaskANmaskB||

where ® is Exclusive-OR, Nis AND, and || || is the count of ‘set’ bits.

Score re-normalisation to compensate for number of bits compared:

HDporm = 0.5 — (0.5 — HD ) 9%

Decision Criterion normalisation by database size and query rate:
HDcy ~ 0.32 — 0.012 logo(N x M)

where N is the search database size, M is the number of queries to be compared
against the full database, while requiring nil False Matches
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Score normalisation rules and principles for
Matching Engines

False Match Rate vs Criterion (200 Billion Cross—Comparisons)
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False Match Rate without Score Normalization:
Dependence on Number of Bits Compared and Criterion

HD¢yi¢ | 400 bits | 500 bits | 600 bits | 700 bits | 800 bits | 900 bits | 1000 bits
0.260 [2-107% |5-1071% [3.1071Y | 1.10710 0 0 0
0265 [3-107° [8-1071° |5.1071% |2.10710 [4.1071 0 0
0270 [4-107° [ 1-107 |9-1071% |5.10710 [2.10710 0 0
0275 [7-107 [ 2-107 [ 1-107 [9-1071° |5.107% |3.107 1 0
0280 [1-10% [ 4-107° | 2-107° [2-107° | 1-107% [2.10710 0
0285 [2-107® | 7-107 | 4-107 | 3-107° | 2-107° |5-107% | 2.1071
0290 [3-10% |1-107® |8-107° | 7-107° | 4-107° | 1-107° | 1-1071°
0205 [4-10% | 2-10% | 1-10% | 1-107® | 9-107° |[3-107° | 4-1071°
0300 [6-107% | 3-107® | 3-107% | 2-10% | 2-107® | 7-107" | 9-10710
0305 [9-10% | 6-107% | 5-10® | 4-107® | 4-10% | 1-107® | 2-107"
0310 [1-107 | 1-1077 | 8-10® | 8-10® | 7-107® | 3-10® | 5-107°
0315 |2-1077 | 2-1077 |1-1077 |2-107 | 1-107 | 6-107% | 1-10°8
0320 |3-10°7 | 3-1077 | 2-1077 | 3-1077 | 3-1077 | 1-1077 | 2-10°®
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Log False Match Rates versus HD_crit and Number of Bits Compared

for 200 Billion Iris Comparisons, non—Normalised Scores
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Effect of the “Amount of lris Visible"

o If eyelids occlude much of the iris, fewer IrisCode bits are available
for comparison with other IrisCodes

e Decision criterion then becomes correspondingly more demanding

e Renormalisation is based on equal-confidence contours for binomial
combinatorics, whatever the number of bits compared

e All of the matches in this table are equivalently decisive:

number of bits | approximate percent maximum acceptable
compared of iris visible fraction of bits disagreeing
200 17% 0.13
300 26% 0.19
400 35% 0.23
500 43% 0.26
600 52% 0.28
700 61% 0.30
800 69% 0.31
911 79% 0.32
1000 87% 0.33
1152 100% 0.34
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200 Billion Iris Cross-Comparisons, 0 Rotations, UAE Database
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“Extreme Value Distribution” for Best Match Score after Multiple Rotations

The new distribution after & rotations of IrisCodes in the search process still has a
simple analytic form that can be derived theoretically. Let fy(x) be the raw density
distribution obtained for the HD .. scores between different irises after comparing
them only in a single relative orientation; for example, fy(x) might be the binomial
distribution. Then Fy(x), the cumulative of fy(z} from 0 to z, is the probability of
getting a False Match in such a test when using /1D, ..., acceptance criterion z:

Fof) = [ fo(w)dz )
or, equivalently, J
o) = = Fof) 2)

Clearly, then, the probability of not making a False Match when using decision crite-
rion z is 1 — Fy(x) after a single test, and it is [1 — Fy(z)]" after carrying out % such
tests independently at % different relative orientations. It follows that the probability
of a False Match after a "best of £" test of agreement, when using HD ., criterion
x, regardless of the actual form of the raw unrotated distribution fy(x), is:

Fr(x) =11 — Fy(a))* (3)
and the expected density f.{z) associated with this cumulative is:

fil) = @)

dx
= kfo(z) [1 = Fy(a)]" (4)
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Score Distribution for 200 Billion Iris Comparisons after Rotations

c i
2 |
E 4
o)
il 200,027,808,750 pair comparisons
i 1 among 632,500 different irises
c
é’ (best match after 7 rotations each)
= - I
- N z
C T
5 ]
o
o [ mean = 0.456, stnd.dev. = 0.0214
c solid curve: binomial distribution extreme-value
Qo Z
= -
© /
All bits All bits
1 agree k disagree
o |

00 01 02 03 04 05 06 07 08 09 1.0
Hamming Distance

UNIVERSITY OF
CAMBRIDGE




NIST (IREX-1) confirmation of the exponential decline
In False Match Rate with minor threshold reductions

False Match Rate
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1e-08
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A critical aspect of the IrisCode algorithm and matching /////
"I method is that for each 1 percentile reduction in threshold /7;/
e.g. from HD = 0.33 to 0.32 to 0.31, the False Match Rate /?
declines by about another factor of 10. NIST testing . /é
1 (IREX) has confirmed exactly this behaviour. This means //7
that exponential increases in database search size can be / /
handled by minuscule changes in threshold. %7
- ./j/
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UNIVERSITY OF
CAMBRIDGE




False Match Rates with HD .., Score Normalization:
Dependence on Criterion (200 Billion Comparisons, UAE Database)

D Criterion | Observed False Match Rate| |

0.220 O (theor: 1in 5 x101%)
0.225 O (theor: 1in 1 x10%%)
0.230 O (theor: 1in 3 x10%4)
0.235 0 (theor: 1in 9 x10'?) The benefit of fusion:
0.240 O (theor: Lin 5 xm]j) This entire range of False Match
0.245 O (theor: 1in 8 x10") probabilities can be squared, if
0.250 O (theor: 1in 2 x10'%) both eyes are used (“AND “rule),
0.255 0 (theor: 1in 7 x1011) because they are independent.
0.262 1 in 200 billion E.g.. If both eyes give HD scores
0.267 1 in 50 billion } below 0.28 (for which FMR~10-9),
0272 1in 13 billion then their joint FMR is ~10-18
0.277 1 in 2.7 billion

V 0282 Lin 284 million ‘ Empirical performance in this
0087 Lin 96 million range was confirmed also by

: : - IBG’s ITIRT Report (2005)

0.292 1 in 40 million testing these algorithms.

{ 0.297 1 in 18 million }
0.302 1 in 8 million In 1.7 billion comparisons
0.307 1 in 4 million between different irises, the
0312 1 in 2 million smallest HD score observed by

\ 0.317 Lin 1 million ) IBG was in the vicinity of 0.28

(consistent with this Table).
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In biometrics, It Is the tall
attenuation that matters!

The key to iris recognition’s
resistance to False Matches
IS the very rapid attenuation
of the tail of the distribution
for Impostor iris comparisons.

This property seems to be unique
to this biometric, and it reflects
the great entropy of the iris code.

UNIVERSITY OF
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Counts

Counts

400
I

200
1

NIST ICE Exp1: Performance of Algorithm-1

Authentics

authentics’ total count = 12,214

authentics falsely rejected at 0.32 = 142

false reject rate = 0.0116 at HD = 0.32 threshold
1-FRR = 0.9884 at HD = 0.32 threshold

Hamming Distance

Imposters

(highly magnified)

imposters’ total count 33,002,386
imposters falsely accepteth\gt 0.32 = 0
false accept rate = 0.00000
1-FAR = 1.00000000

I 1 1 I 1
0.0 0.1 0.2 0.3 0.4

Hamming Distance



Decision Environment for Iris Recognition: Ideal Imaging

same different
mean = 0.019 iy ~ mean = 0.456
stnd.dev. = 0.039 stnd.dev. = 0.020

Density

d=14.1

482,600 comparisons

[— |

T T T T T T

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Hamming Distance
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Decision Environment for Iris Recognition: Non-Ideal Imaging

same different
| B mean = 0.110 mean = 0.458
— stnd.dev. = 0.065 stnd.dev. = 0.0197

Density

d=73

l h—’_’_’ﬁ Aﬂ{[(‘ 2.3 million comparisons

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Hamming Distance
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Statistical Decision Theory

© = -
o - Decision .
: Liberal
Authentics : Impgstors Strategy ibera
0 ' Curve

Criterion
; False Accept Rate

[l Correct Reject Rate

4

E— Correct Accept Rate
False Reject Rate

More conservative:
Lower Hamming Distance Criterion

2

Accept if HD < Criterion

Probability Density
3
Correct Accept Rate
0.5
[

Conservative

f ~ Reject if HD > Criterion
/ A More liberal:
-1 /(\ 0y Raise Hamming Distance Criterion
o]
: M o
o 1 ‘ 1 t 1 ‘ f 1 f { S ‘ ‘
00 01 02 03 04 05 06 07 08 09 10 0.0 0.5 1.0
Hamming Distance False Accept Rate

Generating ROC (or DET) curves requires moving the decision threshold, from
conservative to liberal, to see the trade-off between FMR and FnMR errors.

The slope of the ROC curve is the likelihood ratio: ratio of the two density
distributions at a given decision threshold criterion. Flat ROC curves permit
FMR to be greatly reduced by small threshold changes, at little cost to FnMR.
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Performance of iris
comparison algorithms

Pier 2-3 Single Image
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NBCHC030114/0002
Independent Testing of Iris Recognition Technology

7.71 Intra-Visit Enroliment Comparison DETs (Single-Attempt)

1.E-01

.33 HD OKI-OKI
FMR 0.00014% LG-LG .33 HD

/ FNMR 1.117%  EMR 0.00058%

FNMR 0.964%
— LG-LG EER
FMR 0.50847%

FNMR 0.487%

1.E-02 4

PAN-PAN .33 HD
FMR 0.00013%

FNMR 0.759%

False Non-Match Rate (FNMR)

OKI-OKI EER
FMR 0.22738%
1E-03 4 FNMR 0.246%  PAN-PAN E
FMR 0.21849%
FNMR 0.235%
—LGLG
— OKIOKI
—— PAN-PAN
1.E-04 Y T T T J
1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01

False Match Rate (FMR)

Figure 55: Intra-Visit Enroliment Comparison DETs (Single-Attempt)

May 2005 ITIRT Final Report
International Biometric Group Accuracy Results — 81



Some significant public deployments of the algorithms

- UK Project IRIS: Iris Recognition Immigration System

A “frequent flier” programme that allows enrolled participants to enter the UK
from abroad without passport presentation, and without asserting their identity
in any other way. Cameras at automated gates operate in identification mode,
searching a centralised database exhaustively for any match.

— e —

Home Office What is IRIS?

Border &
Immigration Agency

O

IRIS statistics as of June 2009:

“> 1 million frequent travellers have been enrolled, growing by 2,000
per week, and there have been about 4 million IRIS automated
entries since January 2006, with currently almost 20,000 IRIS

arrivals into the UK per week.”
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& ey T I
Prepare Your Documents
For Inspection

IRIS gates at 10 UK airport terminals for registered
frequent travellers in lieu of passport presentation

UNIVERSITY OF
CAMBRIDGE

US-Canadian border crossing in lieu of passports




- The United Arab Emirates
Iris-based border security system

* Deployed at all 32 air, land, and sea-ports

« 1,190,000 IrisCodes registered in a watch-list

* On a typical day 12,000 irises are compared to
all on the watch-list (14 billion comparisons/day)

e Each exhaustive search takes < 2 seconds

» About 30 trillion (30 million-million) comparisons

of irises have been done since 2001

o After an amnesty for violators of work permit
laws or other offences in 2001, expellees’ iris
patterns were encoded. About 150,000 persons
have since been caught trying to re-enter illegally.
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Residency Permit
Applications
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U.S. Police Depéaftments:*
‘bookings and releases
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Takhtabalg Voluntary Repatriation Centre,
Pakistan-Afghan border

The United Nations
High Commission for
Refugees (UNHCR)
administers cash grants
for returnees, using iris
identification.

% UNIVERSITY OF
&P CAMBRIDGE




Xe
as
22
> >
7 <

O




Sharbat Gula (1984); identified (2002) by these iris algorithms
(based on photographs taken by National Geographic)
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LALT TO MENIE OF OESER AL & GIFT: CALUL 1800 -B&1 - 5441

VOL. 167, NOL 6 i V%, jumE 1985

NATION
GEOGRAPHIC

GREAT SALT LAKE:
THE FLOODENG
DESERT wva

LL 5.~ MEXICAN BORDER:
LIFE ON THE LINE o

JAVA'S WILDLIFE RETURMNS o
Rlong Aighanistan
War-omn Fromtier .

FAIR SKIES FOIR THE CAYMAN ISLANDS ma

After 17 Years
An Afghan Refugee’s Story
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\ Schiphol Airport (NL):
| Iris recognition in lieu of
| . passport presentation

g 3|

ff? ';,_ 41 '
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Access to condominium building, and programming the lift (), by iris recognition
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Iris Image standard; data formats; compressibility

* |ISO/IEC 19794-6 Iris Image Data Interchange
—ormat Standard (revision published in 2011)

 Inter-operable image formats were required, not
oroprietary IrisCode templates (vendor neutral)

 NIST IREX study endorsed new compact formats:
Ir's image compression to as little as 2 KB using
JP2K (not JPEG), with cropping and ROI masking;
or lossless compression using PNG container

e Revision process was empirically-based (process
promoted by Prof. C. Busch, and driven by NIST)




Effect of
JPEG
compression

1-FRR

1.00

0.98

0.97

0.96

0.95

Effect of JPEG Compression on NIST-ICE1Exp1 ROC Curves

Full Size QF =70 QF = 30 QF =20
| 640x480 x 8b |JPEG 320x320[JPEG 320x320|JPEG 320x320
Data Size 307 KB 12.4 KB 5.7 KB 4.2 KB
Reduction . . )
Eacior none 25:1 54:1 72:1
ROC Curve
EER 0.0011 0.0011 0.0020 | 0.0024
FRR
ARR@ | 00012 | 0.0012 | 0.0025 | 0.0036
FRR @
FARSG 9| 0.0030 | 0.0026 | 0.0050 | 0.0069
B decidability d =8.10 d = 8.01 d =7.46 d =7.00
| | | ; i
1in 100,000 1in10,000 1in 1,000 1in 100 1in10
FAR
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ression allows iris images




Effect of ROI+JPEG2000 Compression on NIST-ICE1Exp1 ROC Curves

Effect of - e e P Epp——
JPEG-2000 + e DT e Tttt sl
ROl isolation T

compression ©

0.99

.........................................................

Full Size CF=20 CF =50 CF =60

-+
[
1
[
1
1
1
1
[
1
1
T
[
1
1
[

g N 640x480 x 8b [JPEG2K 320x320[JPEG2K 320x320 | JPEG2K 320x320
S | DataSize| 307 KB 5.1 KB 2.0 KB 1.7 KB
% Reduction
- Factor none 60:1 150:1 180:1
T - ROC Curve
o EER 0.0011 0.0026 0.0024 0.0027

ARR@ 1 0.0012 | 0.0034 | 0.0032 | 0.0039
FRR
FAnn@ | 0.0030 | 0.0046 | 0.0054 | 0.0084

({e]
o -
o decidability d =8.10 d=7.80 d =745 d=7.11
0 : : : : :
g I I I I I
1in 100,000 1in 10,000 1 in 1,000 1in 100 1in10
FAR
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JPEG Quality Factor 70 ROI + JPEG Quality Factor 70, average image size 5.7KB

= '
[=] o
g 7 N ] + same eye: mean HD score = 0.1080
Extracted No ROI - !
g - ROI
— mean = 5,689 mean = 12,353
So . . o
28 min = 2,991 min = 7,647 =
(&} vo]
max = 8,216 max = 18,956 =
o =
o — (o]
- o
- o
° | | T T | 2
[y} 5,000 10,000 15,000 20,000
Image Size in Bytes
JPEG Quality Factor 30
o L= .
g = [ ‘ | T I I |
Extracted No ROI 0.0 .02 0.4 0.6 0.8 1.0
S ROI :
& ! Hamming Distance
= mean = 2,742 mean = 5,691 ,
38 min = 1,562 min = 3,088
© max= 4,099  max= 9,827 :
,% . o ROI + JPEG2000 Compression Factor 60, average image size 1.7KB
=] .
N . 1
o - '« same eye: mean HD score = 0.1424
I I I I I 1
4 5,000 10,000 15,000 20,000 :
Image Size in Bytes :
JPEG Quality Factor 20 S -
8 — -—
= 5
Extracted No ROI 3
S ROI
o
- mean= 2115  mean = 4,233 S
So ) ) )
a < min = 1,323 min = 2,295
© max = 3,145  max = 7,445
o]
8
o -
@ [ | T I I |

0 5,000 10,000 15,000 20,000
Image Size in Bytes
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Strate gy Compression | Average Interoperability

Parameter | Image Size | Hamming Distance
Cropping (320 x 320) QF =70 | 12.4 KB 0.006
+ JPEG Compression QF = 30 5.7 KB 0.011
QIF = 20 4.2 KB 0.021
Cropping + ROI + QF = 70 5.7 KB 0.015
JPEG Compression QF = 30 2.7 KB 0.021
QF = 20 2.1 KB 0.031
Cropping + ROI + CF = 20 5.1 KB 0.018
JPEG2000 Compression | CF = 50 2.0 KB 0.027
CF = 60 1.7 KB 0.035

Interoperability of the ROI and compression methods, compared with original

UNIVERSITY OF
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New ISO Standard: highly compact iris image
format, compressed to as little as 2,000 bytes

o

*Cropping, and masking non-iris regions, preserves the coding budget

*Pixels outside the ROI are fixed to constant values, for normal segmentation
«Softening the mask boundaries also preserves the coding budget

*At only 2,000 bytes, iris images are now much more compact than fingerprints
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Combining biometrics (fuzz data, unreliable bits) with
cryptography (requires exactly correct bits in keys):

--Can error-correcting codes give stable “biometric keys™?

« Familiar example of error-correcting codes: the “Hamming 7/4”
Code uses 7 bits to transmit 4 bits reliably over a noisy channel

 How it works: before transmission, 3 error-correcting bits are
derived from the 4 data bits by XORIng triples of them. Then all
7 bits are then transmitted as a block.

« Upon reception, 3 syndromes are computed by XORIing each of
the received error-correcting bits with the data bits (as received)
that should have defined them.

 If all 3 syndromes equal O, there was no error. Else, they
specify which one bit in a 7-bit block was bad.

& UNIVERSITY OF
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by = bs D bsgD by and,
s4 = by Dbs D bsD by

by = b3 D beD by and,
Sy = 52@53@666967
bl = bg . b5 & b7 and,

s1 = biBbs®bs P by

On reception i the binary number s4555; = 0 then there is no error, else by, s,
1s the bit in error.

Note that this code will correct at most 1 bad bit in each block
of 7. It used 3 bits to correct any of 7 possible block errors.

Many other error-correcting codes exist. E.g. a Golay code
uses 23 bits to transmit 12 bits reliably, correcting up to 3 bit
errors in each block. Compact discs use Reed-Solomon codes
that correct up to 4,000 bits in an error burst (= 2.5 mm long).

B UNIVERSITY OF
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Hadamard Matrix Codes
s o

=

A Hadamard matrix is a square orthogonal matrix with binary elements:
the inner product of any two rows or columns is 0. The rows (columns)
can be used as codewords by projecting binary data (e.g. IrisCodes) onto
them and finding the closest match. They allow extraction of stable keys.

Example: a 64 x 64 Hadamard matrix generates 128 codewords, and so
(by encoding a 64-bit data string into a codeword using its 7-bit address)
can “correct” up to 15 errors in each block of 64 data bits. From every 64
bit chunk of biometric data, we can extract 7 stable bits of biometric key.

5% UNIVERSITY OF
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Combining biometrics with cryptography:

(Hao Feng PhD dissertation, Cambridge 2007)

Use Hadamard+RS coding of a randomly generated key
(embedding error correction) and XOR this with a 2048-bit
user lrisCode. Securely discard the original random key,
but store the “locked (XORed) IrisCode” on a token.

XOR a user-presented IrisCode: retrieve a corrupted key,
from which the error-correction retrieves the original key.

This encoding is stable with up to 15 bit “errors” in each
chunk of 64 IrisCode bits. (Tolerates 23% variation.)

The Reed-Solomon encoding corrects for block errors
(“burst errors” in which more than 15 bits are bad in any
block of 64, e.g. due to eyelashes, reflections, etc.)

This allows extraction of 20 stable blocks from 32 blocks,
yielding 140 bits (20 x 7 bits) of stable biometric key.

Tested on 700 same-eye IrisCodes from 70 eyes: in all
but 3 cases (0.47%) the stable key could be generated.

& UNIVERSITY OF
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(Hao Feng PhD dissertation, continued)

................................................ : 91()(‘1{ : ............................................... :

encoding : Smart card ! encoding

T | RSandHad | 2048-bit ? i 2048-bit | HadandRS | T

Y T \ ___________________ (1) . <I>9m ____________________ \ _____ i

Discarded  Encoding Reference Sample Decoding

Recall that the Boolean XOR operator @ combines two strings such that when the resulting string
Is again XORed with either of the first two strings, the other string emerges:

A B C=A®B COHA=B COHBB=A

0 0 0 0 0

1 0 1 0 1 Truth Table for XOR
0 1 1 1 0

1 1 0 1 1

Thus XORing with the Sample IrisCode retrieves the key in slightly corrupted, but correctable, form.

7 UNIVERSITY OF
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(Hao Feng PhD dissertation, continued)

The 140-bit stable biometric key means that identification
of persons can be performed biometrically but without
storing a central database of biometric templates.

(Instead, what is stored is only the 140-bit key extracted
from a locked IrisCode, but not reversible into it. Storing
a locked code + key-hash on token gives a citizen control
over its use, and importantly, provides revocability.)

A citizen establishes their identity by biometrically
generating / extracting their stable 140-bit key.

The 140 bits of stable biometric key extracted from the
Iris compares favourably with the 69 bits extractable from
fingerprints (Clancy 2003), which could be done in only
70% of samples.
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A short bibliography on biometric crypto-systems

1. Soutar, Roberge, Stoianov, Gilroy, and Vijaya-Kumar (1999)
“Biometric Encryption” (ICSA Guide to Cryptography, McGraw-Hill)

2. Davida, Frankel, Matt, and Peralta (1999) “On the Relation of Error
Correction and Cryptography to an Off-Line Biometric ID Scheme”

3. Clancy, Kiyavash, and Lin (2003) “Secure Smart Card-based
Fingerprint Authentication” (Proc. 2003 ACM SIGMM Workshop)

4.  Goh and Ngo (2003) “Computation of Cryptographic Keys from
Face Biometrics” (Proc. 2003 Int’l Fed. for Information Processing)

5. Uludag, Pankanti, Prabhakar, and Jain (2004) “Biometric Crypto-
Systems: Issues and Challenges” (Proc. IEEE, vol. 92, 2004)

6. Hao, Anderson, and Daugman (2006) “Combining Crypto with
Biometrics Effectively” (IEEE Trans. Computers, vol. 55(9), 2006)

7. Hao, Daugman, and Zielinski (2008) “A Fast Search Algorithm for
a Large Fuzzy Database” (IEEE Trans.Info.Foren.Sec. 3(2), 2008)
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Fuzzy database matching with a Codex

(based on Technical Report circulated in March 2006: Hao, Daugman, and
Zielinski, “A fast search algorithm for a large fuzzy database”, published in
IEEE T-IFS, 3(2), pp. 203-212.)

Uses Indexing for large databases, instead of exhaustive search.

The concept is similar to Content-Addressable Memory (CAM),
In which the data itself is used as an address.

A Codex Is constructed, listing IrisCodes containing various bit

patterns. When enough collisions, or “suspicious coincidences”
occur between IrisCodes, they (and they alone) are considered
candidates for matching. Speed-up arises from ignoring others.

Pruning factor (therefore speed-up factor) approaches ~ 100:1.
Adoption of Indexing should be gated by Quality Assessment.
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The Doctrine of Suspicious Coincidences

When the recurrence of patterns just by chance is a highly
Improbable explanation, it is unlikely to be a coincidence.
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“Panopticon” indexing, in lieu of exhaustive search

After enrollment of a large database, an off-line indexing stage
classifies IrisCodes by bit patterns, hoping to avoid exhaustive
search.

The concept is similar to Content-Addressable Memory (CAM), Iin
which the data itself is used as an address.

A Codex is constructed, listing IrisCodes containing all possible 10-
bit patterns, for all positions. When enough “suspicious
coincidences” (collisions) occur between IrisCodes, they (alone)
are considered candidates for matching. Speed-up arises from
ignoring the others.

Named “Panopticon” (after Jeremy Bentham’s 1791 prison design)
because the entire database is surveyed at once, not
sequentially.

Pruning factor (therefore speed-up factor) can approach ~ 100:1.
Adoption of Indexing should be gated by Quality Assessment.




By surveying the entire database simultaneously, the Codex
resembles Bentham’s (1791) prison design called “Panopticon”

i : L L
Contemporary [ B s aily JeEaia
implementation -], “HEncr SRR il e 0 The “Auto-lcon”
PN e Al o
LT TS Hi0 LLELRE Jeremy Bentham today, at University College
London, which he founded. He is still brought
. = SN  Out to meetings of the College Council, listed
as “present but not voting.”
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Active research areas: Iris acquisition in
less constrained imaging conditions

* iris on-the-move (normal walking, 1 meter/sec)

e Iris at-a-distance (3 meters, even 10+ meters?)

e iris off-axis (deviated gaze: not looking at camera)

* Iris recognition in ambient, uncontrolled illumination

* IriS recognition in unsupervised conditions
(countermeasures against spoofing attacks)

* Iris recognition at reduced resolution

NIVERSITY OF
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Iris-on-the-Move,

Parameters of Sarnoff loM system
(Matey et al., Proc IEEE, 94, Nov. 2006)

e camera distance: 3 meters, hidden
 capture rate: 15 frames/sec
 subject walking speed: 1 meter/sec
* inter-frame travel distance: ~ 6 cm
e sensor: 2048 x 2048 pixels (Pulnix)
* resolution at subject: 0.1 mm/pixel
- (so iris diameter is about 100 pixels)
* lens focal length: 210 mm

e illumination: NIR LEDs on portal

o capture volume: 20 cm x 20 cm x
10cm (depth of field), so one or two
well-focused images can be captured
at a walking speed of 1 meter/sec

UNIVERSITY OF
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Iris-at-a-Distance

|

Fig. 6. lllustration of the concept of operation for the IOM system.
The panels behind the subject are the sides of a commercial

metal detector. The stanchions just in front of the subject support
an array of NIR illuminators. The camera package is at the far right
of the subject.
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Iris Images acquired off-axis...
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...can be “corrected” by Fourier-based trigonometry to estimate
the gaze angle and make a corrective affine transformation,
effectively “rotating the eye in its socket, towards the camera:”
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Complication: Ultrasound images of the iris in cross-section reveal that it is
not planar, and that its curvature changes with lens accommodation. Also,
ultrasound reveals that it “bunches” when it dilates (non-elastic deformation).

CONTROL

Violations of the
assumptions of
“rubber-sheet”
elasticity, and of
planarity, limit the
validity of an affine
correction for the
projective geometry
of off-axis gaze,
and of pupil dilation.

Optical axis
(approximate)

NARROW ANGLE

PIGMENT DISFERSION

UNACCOMMODATED IMMEDIATELY AFTER 3 MINUTES AFTER
ACCOMMODATION ACCOMMODATION



Countermeasures against spoofing

@ All biometrics are vulnerable to
spoof attacks, either to conceal an
identity, or to impersonate another.

No biometric pattern is a secret.
How can iris vitality be proven?

 spectrographic and photonic
countermeasures

* behavioural countermeasures
* detection of analog attacks

 permutation of IrisCode bytes to
invalidate digital replay attacks

UNIVERSITY OF “
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Photonic properties of living tissue (wavelength dependence of reflected light)
may help distinguish a living eye from a fake artefact in a “spoofing” attack.

] DD140 - 1 2.5+
* | water -
Enmm ‘i N . ) q
; s ag;tenal blood E tr 1
§ 0.0080 § bt
- venous blood < |
=
z 1 -
%u & melanin
m E -
2 0.0020 < 0.51
0.0000 = ’ Y o
| i I ] 1
$50 700 750 W0 WO WO M 300 400 500 600 700 8OO
Wavelength (nm) WAVELENGTH (nm)

Other possibilities: pupillary light response (dilation / constriction / hippus);
dynamic specular reflections from cornea; cavity optics properties (retinal back-
reflection; 4 Purkinje reflections); eye blinks and movement challenges; etc.

UNIVERSITY OF
CAMBRIDGE




Biophotonics as a countermeasure
against spoofing with an artificial iris:

living tissue responds differently to different wavelengths of light

+ Boyce et al, “Multispectral Iris Analysis: A Preliminary Study," CVPR Workshop on Biometrics, June 2006

Red Green Blue

950nm 1050nm 1150nm 1350nm 1250nm

(Multispectral iris photographs from Laboratory of Arun Ross)



Detecting the
presence of a
printed, fake,
patterned
contact lens
by the 2D
Fourier
spectrum of
the printing
dot matrix.

Natural iris Fake iris printed on a contact lens

Such lenses
are popular
as cosmetic
accessories
to change
one’s natural
eye colour.

2D Fourier spectrum of natural iris 2D Fourier spectrum of fake iris
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Reduced resolution and compression

Half-size resolution in iae
QCIF (Quarter Common anEs g
Intermediate Format), in N ol
which the iris radius may
typically be only 50 pixels
seems acceptable. No
impact on FMR; but there
Is a small cost in FnMR.

Sarnoff “iris-on-the-move’
and “iris-at-a-distance”
acquires iris images at
this resolution, and then
up-samples.

How much further can
reduction in resolution
requirement be pushed?
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In the visible band of light in unconstrained environments
(e.g. outdoors), ambient corneal reflections are common.
An iris acquired in the visible band often looks like this:
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All surfaces lie somewhere between
specular (mirror-like) and Lambertian
(scattering light equally in all directions).

The cornea is a specular surface; the
iris is Lambertian. This fact can be
exploited to separate out the ambient
environmental corneal reflections, which
are broadband but weak, from the more
narrow-band light in a nominated band
projected by the camera onto the eye to
obtain a Lambertian image of the iris.

By allowing back into the camera only
that same nominated narrow band of
light that the iris camera emitted, a band
in which there is much more spectral
power than in the broadband ambient
corneal reflections, these two sources
can be separated.

UNIVERSITY OF
CAMBRIDGE

from all of the environment
(all ambient wavelengths).

S

Hoo yan
Specular corneal reflection

from strong IR illuminator:
all others blocked by filter.
I
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i
Yoo . .  FO09
Lambertian iris image made

by strong IR illuminator.
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The result is an image acquired in narrowband near-infrared light,
from which almost all ambient environmental corneal reflections
(except for that of the illuminator) have been “scrubbed.”
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|The Hubble

Iris Camera
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(TAANG RIS SCANS 1S
PIFFERENT FROW
TARING FINGERPRINTS,
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‘Gmndma do you mtmi 1f ! dﬂ
an iris recognibion scan?




w Thank you
gy W “e
http://www.CLfam.a'c.uk/users/jgleOO/
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